scholarly journals P-Partitions and Quasisymmetric Power Sums

Author(s):  
Ricky Ini Liu ◽  
Michael Weselcouch

Abstract The $(P, \omega )$-partition generating function of a labeled poset $(P, \omega )$ is a quasisymmetric function enumerating certain order-preserving maps from $P$ to ${\mathbb{Z}}^+$. We study the expansion of this generating function in the recently introduced type 1 quasisymmetric power sum basis $\{\psi _{\alpha }\}$. Using this expansion, we show that connected, naturally labeled posets have irreducible $P$-partition generating functions. We also show that series-parallel posets are uniquely determined by their partition generating functions. We conclude by giving a combinatorial interpretation for the coefficients of the $\psi _{\alpha }$-expansion of the $(P, \omega )$-partition generating function akin to the Murnaghan–Nakayama rule.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Jair Taylor

International audience We develop a method for counting words subject to various restrictions by finding a combinatorial interpretation for a product of formal sums of Laguerre polynomials. We use this method to find the generating function for $k$-ary words avoiding any vincular pattern that has only ones. We also give generating functions for $k$-ary words cyclically avoiding vincular patterns with only ones whose runs of ones between dashes are all of equal length, as well as the analogous results for compositions. Nous développons une méthode pour compter des mots satisfaisants certaines restrictions en établissant une interprétation combinatoire utile d’un produit de sommes formelles de polynômes de Laguerre. Nous utilisons cette méthode pour trouver la série génératrice pour les mots $k$-aires évitant les motifs vinculars consistant uniquement de uns. Nous présentons en suite les séries génératrices pour les mots $k$-aires évitant de façon cyclique les motifs vinculars consistant uniquement de uns et dont chaque série de uns entre deux tirets est de la même longueur. Nous présentons aussi les résultats analogues pour les compositions.


10.37236/1820 ◽  
2004 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter Clifford ◽  
Richard P. Stanley

We give a basis for the space spanned by the sum $\hat{s}_\lambda$ of the lowest degree terms in the expansion of the Schur symmetric functions $s_\lambda$ in terms of the power sum symmetric functions $p_\mu$, where deg$(p_i)=1$. These lowest degree terms correspond to minimal border strip tableaux of $\lambda$. The dimension of the space spanned by $\hat{s}_\lambda$, where $\lambda$ is a partition of $n$, is equal to the number of partitions of $n$ into parts differing by at least 2. Applying the Rogers-Ramanujan identity, the generating function also counts the number of partitions of $n$ into parts $5k+1$ and $5k-1$. We also show that a symmetric function closely related to $\hat{s}_\lambda$ has the same coefficients when expanded in terms of power sums or augmented monomial symmetric functions.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1161
Author(s):  
Hari Mohan Srivastava ◽  
Sama Arjika

Basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hypergeometric functions and the basic (or q-) hypergeometric polynomials are studied extensively and widely due mainly to their potential for applications in many areas of mathematical and physical sciences. Here, in this paper, we introduce a general family of q-hypergeometric polynomials and investigate several q-series identities such as an extended generating function and a Srivastava-Agarwal type bilinear generating function for this family of q-hypergeometric polynomials. We give a transformational identity involving generating functions for the generalized q-hypergeometric polynomials which we have introduced here. We also point out relevant connections of the various q-results, which we investigate here, with those in several related earlier works on this subject. We conclude this paper by remarking that it will be a rather trivial and inconsequential exercise to give the so-called (p,q)-variations of the q-results, which we have investigated here, because the additional parameter p is obviously redundant.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Massimo Gisonni ◽  
Tamara Grava ◽  
Giulio Ruzza

AbstractWe express the topological expansion of the Jacobi Unitary Ensemble in terms of triple monotone Hurwitz numbers. This completes the combinatorial interpretation of the topological expansion of the classical unitary invariant matrix ensembles. We also provide effective formulæ for generating functions of multipoint correlators of the Jacobi Unitary Ensemble in terms of Wilson polynomials, generalizing the known relations between one point correlators and Wilson polynomials.


2014 ◽  
Vol 60 (1) ◽  
pp. 19-36
Author(s):  
Dae San Kim

Abstract We derive eight identities of symmetry in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by ramified roots of unity. All of these are new, since there have been results only about identities of symmetry in two variables. The derivations of identities are based on the p-adic integral expression of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.


2022 ◽  
Vol Volume 44 - Special... ◽  
Author(s):  
Shreejit Bandyopadhyay ◽  
Ae Yee

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.


2021 ◽  
Vol 13 (2) ◽  
pp. 413-426
Author(s):  
S. Naderi ◽  
R. Kazemi ◽  
M. H. Behzadi

Abstract The bucket recursive tree is a natural multivariate structure. In this paper, we apply a trivariate generating function approach for studying of the depth and distance quantities in this tree model with variable bucket capacities and give a closed formula for the probability distribution, the expectation and the variance. We show as j → ∞, lim-iting distributions are Gaussian. The results are obtained by presenting partial differential equations for moment generating functions and solving them.


2011 ◽  
Vol 21 (07) ◽  
pp. 1217-1235 ◽  
Author(s):  
VÍCTOR BLANCO ◽  
PEDRO A. GARCÍA-SÁNCHEZ ◽  
JUSTO PUERTO

This paper presents a new methodology to compute the number of numerical semigroups of given genus or Frobenius number. We apply generating function tools to the bounded polyhedron that classifies the semigroups with given genus (or Frobenius number) and multiplicity. First, we give theoretical results about the polynomial-time complexity of counting these semigroups. We also illustrate the methodology analyzing the cases of multiplicity 3 and 4 where some formulas for the number of numerical semigroups for any genus and Frobenius number are obtained.


2014 ◽  
Vol 23 (6) ◽  
pp. 1057-1086 ◽  
Author(s):  
PETER J. GRABNER ◽  
ARNOLD KNOPFMACHER ◽  
STEPHAN WAGNER

We consider statistical properties of random integer partitions. In order to compute means, variances and higher moments of various partition statistics, one often has to study generating functions of the form P(x)F(x), where P(x) is the generating function for the number of partitions. In this paper, we show how asymptotic expansions can be obtained in a quasi-automatic way from expansions of F(x) around x = 1, which parallels the classical singularity analysis of Flajolet and Odlyzko in many ways. Numerous examples from the literature, as well as some new statistics, are treated via this methodology. In addition, we show how to compute further terms in the asymptotic expansions of previously studied partition statistics.


1975 ◽  
Vol 12 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Henry Braun

The problem of approximating an arbitrary probability generating function (p.g.f.) by a polynomial is considered. It is shown that if the coefficients rj are chosen so that LN(·) agrees with g(·) to k derivatives at s = 1 and to (N – k) derivatives at s = 0, then LN is in fact an upper or lower bound to g; the nature of the bound depends only on k and not on N. Application of the results to the problems of finding bounds for extinction probabilities, extinction time distributions and moments of branching process distributions are examined.


Sign in / Sign up

Export Citation Format

Share Document