scholarly journals Donor-Derived CD4+ T Cells and Human Herpesvirus 6B Detection After Allogeneic Hematopoietic Cell Transplantation

Author(s):  
Derek J Hanson ◽  
Hu Xie ◽  
Danielle M Zerr ◽  
Wendy M Leisenring ◽  
Keith R Jerome ◽  
...  

Abstract We sought to determine whether donor-derived human herpesvirus (HHV) 6B–specific CD4+ T-cell abundance is correlated with HHV-6B detection after allogeneic hematopoietic cell transplantation. We identified 33 patients who received HLA-matched, non–T-cell–depleted, myeloablative allogeneic hematopoietic cell transplantation and underwent weekly plasma polymerase chain reaction testing for HHV-6B for 100 days thereafter. We tested donor peripheral blood mononuclear cells for HHV-6B–specific CD4+ T cells. Patients with HHV-6B detection above the median peak viral load (200 copies/mL) received approximately 10-fold fewer donor-derived total or HHV-6B–specific CD4+ T cells than those with peak HHV-6B detection at ≤200 copies/mL or with no HHV-6B detection. These data suggest the importance of donor-derived immunity for controlling HHV-6B reactivation.

2011 ◽  
Vol 208 (5) ◽  
pp. 1069-1082 ◽  
Author(s):  
Daigo Hashimoto ◽  
Andrew Chow ◽  
Melanie Greter ◽  
Yvonne Saenger ◽  
Wing-Hong Kwan ◽  
...  

Acute graft-versus-host disease (GVHD) results from the attack of host tissues by donor allogeneic T cells and is the most serious limitation of allogeneic hematopoietic cell transplantation (allo-HCT). Host antigen-presenting cells are thought to control the priming of alloreactive T cells and the induction of acute GVHD after allo-HCT. However, whereas the role of host DC in GVHD has been established, the contribution of host macrophages to GVHD has not been clearly addressed. We show that, in contrast to DC, reducing of the host macrophage pool in recipient mice increased donor T cell expansion and aggravated GVHD mortality after allo-HCT. We also show that host macrophages that persist after allo-HCT engulf donor allogeneic T cells and inhibit their proliferation. Conversely, administration of the cytokine CSF-1 before transplant expanded the host macrophage pool, reduced donor T cell expansion, and improved GVHD morbidity and mortality after allo-HCT. This study establishes the unexpected key role of host macrophages in inhibiting GVHD and identifies CSF-1 as a potential prophylactic therapy to limit acute GVHD after allo-HCT in the clinic.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3832-3839 ◽  
Author(s):  
Ming-Tseh Lin ◽  
Li-Hui Tseng ◽  
Haydar Frangoul ◽  
Ted Gooley ◽  
Ji Pei ◽  
...  

Lymphopenia and immune deficiency are significant problems following allogeneic hematopoietic cell transplantation (HCT). It is largely assumed that delayed immune reconstruction is due to a profound decrease in thymus-dependent lymphopoiesis, especially in older patients, but apoptosis is also known to play a significant role in lymphocyte homeostasis. Peripheral T cells from patients who received HCT were studied for evidence of increased cell death. Spontaneous apoptosis was measured in CD3+ T cells following a 24-hour incubation using 7-amino-actinomycin D in conjunction with the dual staining of cell surface antigens. Apoptosis was significantly greater among CD3+ T cells taken from patients 19-23 days after transplantation (30.4% ± 12.5%,P < .05), and 1 year after transplantation (9.7% ± 2.8%, P < .05) compared with healthy controls (4.0% ± 1.5%). Increased apoptosis occurred preferentially in HLA (human leukocyte antigen)-DR positive cells and in both CD3+/CD4+ and CD3+/CD8+ T-cell subsets, while CD56+/CD3− natural killer cells were relatively resistant to apoptosis. The extent of CD4+T-cell apoptosis was greater in patients with grade II-IV acute graft-versus-host disease (GVHD) (33.9% ± 11.3%) compared with grade 0-I GVHD (14.6 ± 6.5%, P < .05). T-cell apoptosis was also greater in patients who received transplantations from HLA-mismatched donors (39.5% ± 10.4%,P < .05) or HLA-matched unrelated donors (32.1% ± 11.4%, P < .05) compared with patients who received transplantations from HLA-identical siblings (19.6% ± 6.7%). The intensity of apoptosis among CD4+ T cells was significantly correlated with a lower CD4+ T-cell count. Together, these observations suggest that activation of T cells in vivo, presumably by alloantigens, predisposes the cells to spontaneous apoptosis, and this phenomenon is associated with lymphopenia. Activation-induced T-cell apoptosis may contribute to delayed immune reconstitution following HCT.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2294-2302 ◽  
Author(s):  
Carolina Berger ◽  
Mary E. Flowers ◽  
Edus H. Warren ◽  
Stanley R. Riddell

AbstractThe introduction of an inducible suicide gene such as the herpes simplex virus thymidine kinase (HSV-TK) might allow exploitation of the antitumor activity of donor T cells after allogeneic hematopoietic cell transplantation (HCT) without graft versus host disease. However, HSV-TK is foreign, and immune responses to gene-modified T cells could lead to their premature elimination. We show that after the infusion of HSV-TK–modified donor T cells to HCT recipients, CD8+ and CD4+ T-cell responses to HSV-TK are rapidly induced and coincide with the disappearance of transferred cells. Cytokine flow cytometry using an overlapping panel of HSV-TK peptides allowed rapid detection and quantitation of HSV-TK–specific T cells in the blood and identified multiple immunogenic epitopes. Repeated infusion of modified T cells boosted the induced HSV-TK–specific T cells, which persisted as memory cells. These studies demonstrate the need for nonimmunogenic suicide genes and identify a strategy for detection of CD4+ and CD8+ T-cell responses to transgene products that should be generally applicable to monitoring patients on gene therapy trials. The potency of gene-modified T cells to elicit robust and durable immune responses imply this approach might be used for vaccination to elicit T-cell responses to viral or tumor antigens.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2021-2030 ◽  
Author(s):  
Michael B. Maris ◽  
Dietger Niederwieser ◽  
Brenda M. Sandmaier ◽  
Barry Storer ◽  
Monic Stuart ◽  
...  

Abstract A hematopoietic cell transplantation (HCT) approach was developed for elderly or ill patients with hematologic malignancies that employed nonmyeloablative conditioning to avoid common regimen-related toxicities and relied on graft-versus-tumor effects for control of malignancy. Eighty-nine patients, median age 53 years, were given fludarabine (90 mg/m2) and 2 Gy total body irradiation. Marrow (n = 18) or granulocyte colony-stimulating factor (G-CSF)–stimulated peripheral blood mononuclear cells (G-PBMCs; n = 71) were transplanted from unrelated donors matched for human leukocyte antigen A (HLA-A), -B, -C antigens and -DRB1 and -DQB1 alleles. Postgrafting immunosuppression included mycophenolate mofetil and cyclosporine. Donor T-cell chimerism was higher for G-PBMCs compared with marrow recipients. Durable engraftment was observed in 85% of G-PBMCs and 56% of marrow recipients. Cumulative probabilities of grade II, III, and IV acute graft-versus-host disease (GVHD) were 42%, 8%, and 2%, respectively. Nonrelapse mortality at day 100 and at 1 year was 11% and 16%, respectively. One-year overall survivals and progression-free survivals were 52% and 38%, respectively. G-PBMC recipients had improved survival (57% vs 33%) and progression-free survival (44% vs 17%) compared with marrow recipients. HLA-matched unrelated donor HCT after nonmyeloablative conditioning is feasible in patients ineligible for conventional HCT. G-PBMCs conferred higher donor T-cell chimerism, greater durable engraftment, and better progression-free and overall survivals compared with marrow.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3832-3839 ◽  
Author(s):  
Ming-Tseh Lin ◽  
Li-Hui Tseng ◽  
Haydar Frangoul ◽  
Ted Gooley ◽  
Ji Pei ◽  
...  

Abstract Lymphopenia and immune deficiency are significant problems following allogeneic hematopoietic cell transplantation (HCT). It is largely assumed that delayed immune reconstruction is due to a profound decrease in thymus-dependent lymphopoiesis, especially in older patients, but apoptosis is also known to play a significant role in lymphocyte homeostasis. Peripheral T cells from patients who received HCT were studied for evidence of increased cell death. Spontaneous apoptosis was measured in CD3+ T cells following a 24-hour incubation using 7-amino-actinomycin D in conjunction with the dual staining of cell surface antigens. Apoptosis was significantly greater among CD3+ T cells taken from patients 19-23 days after transplantation (30.4% ± 12.5%,P &lt; .05), and 1 year after transplantation (9.7% ± 2.8%, P &lt; .05) compared with healthy controls (4.0% ± 1.5%). Increased apoptosis occurred preferentially in HLA (human leukocyte antigen)-DR positive cells and in both CD3+/CD4+ and CD3+/CD8+ T-cell subsets, while CD56+/CD3− natural killer cells were relatively resistant to apoptosis. The extent of CD4+T-cell apoptosis was greater in patients with grade II-IV acute graft-versus-host disease (GVHD) (33.9% ± 11.3%) compared with grade 0-I GVHD (14.6 ± 6.5%, P &lt; .05). T-cell apoptosis was also greater in patients who received transplantations from HLA-mismatched donors (39.5% ± 10.4%,P &lt; .05) or HLA-matched unrelated donors (32.1% ± 11.4%, P &lt; .05) compared with patients who received transplantations from HLA-identical siblings (19.6% ± 6.7%). The intensity of apoptosis among CD4+ T cells was significantly correlated with a lower CD4+ T-cell count. Together, these observations suggest that activation of T cells in vivo, presumably by alloantigens, predisposes the cells to spontaneous apoptosis, and this phenomenon is associated with lymphopenia. Activation-induced T-cell apoptosis may contribute to delayed immune reconstitution following HCT.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hideki Nakasone ◽  
Machiko Kusuda ◽  
Kiriko Terasako-Saito ◽  
Koji Kawamura ◽  
Yu Akahoshi ◽  
...  

AbstractCytomegalovirus reactivation is still a critical concern following allogeneic hematopoietic cell transplantation, and cellular immune reconstitution of cytomegalovirus-specific cytotoxic T-cells is necessary for the long-term control of cytomegalovirus reactivation after allogeneic hematopoietic cell transplantation. Here we show the features of repertoire diversity and the gene expression profile of HLA-A24 cytomegalovirus-specific cytotoxic T-cells in actual recipients according to the cytomegalovirus reactivation pattern. A skewed preference for BV7 genes and sequential “G” amino acids motif is observed in complementarity-determining region-3 of T cell receptor-β. Increased binding scores are observed in T-cell clones with complementarity-determining region-3 of T cell receptor-β with a “(G)GG” motif. Single-cell RNA-sequence analyses demonstrate the homogenous distribution of the gene expression profile in individual cytomegalovirus-specific cytotoxic T-cells within each recipient. On the other hand, bulk RNA-sequence analyses reveal that gene expression profiles among patients are different according to the cytomegalovirus reactivation pattern, and are associated with cytokine production or cell division. These methods and results can help us to better understand immune reconstitution following hematopoietic cell transplantation, leading to future studies on the clinical application of adoptive T-cell therapies.


2020 ◽  
Vol 4 (9) ◽  
pp. 1881-1893
Author(s):  
Eduardo Espada ◽  
Matthew P. Cheng ◽  
Haesook T. Kim ◽  
Ann E. Woolley ◽  
Jason I. Avigan ◽  
...  

Abstract Clinical disease caused by BK virus reactivation is a frequent complication of allogeneic hematopoietic cell transplantation (HCT). Because of the lack of effective antiviral agents, BK virus–specific T cells are emerging as a potential therapy for BK virus disease, but the immune response to BK virus after allogeneic HCT has not been well characterized. Our study describes reconstitution of BK virus–specific T-cell immunity in 77 adult patients after HCT. All patients had urinary symptoms, and urine was tested for BK virus replication; 33 patients were positive for BK virus (cases), and 44 were negative (controls). In BK virus cases, the median time to first positive test was 75 days (range, 2-511). BK virus cases had lower CD4 T-cell counts 3 to 9 months after transplant, but CD8 T-cell counts were similar in cases and controls. BK virus–specific T cells were identified by cytokine flow cytometry in cryopreserved samples collected prospectively. BK virus–specific CD4 T cells producing T helper 1 (Th1) cytokines recovered quickly after HCT. BK virus–specific T cells were detected more frequently in patients with BK virus reactivation at most time points, and CD4 T cells producing Th1 cytokines were more frequent than BK virus–specific cytolytic CD8 T cells. Early detection of interferon-γ+ and cytolytic BK virus–specific CD4 T cells was associated with lower rates of hematuria among cases. Overall, our study describes recovery of BK virus–specific T cells after HCT and the distinct roles for BK virus–specific T cells in the development and resolution of clinical symptoms.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1923-1923
Author(s):  
Esteban Arrieta-Bolaños ◽  
Maryam Mohamaddokht ◽  
Thuja Meurer ◽  
Pietro Crivello ◽  
Amin T. Turki ◽  
...  

Introduction: Graft-versus-host disease (GvHD) is a major impediment to the cure of blood disorders by hematopoietic cell transplantation (HCT). GvHD is mediated by alloreactive T cells recognizing histocompatibility antigen (HAg) mismatches between patient and donor. Naïve T cells are thought to be the main mediators of alloreactive responses since, theoretically, memory T cells would have never been exposed to and selected by alloantigens, except in multiparous women or transfused individuals. Accordingly, clinical trials using naïve T cell-depleted allografts are being conducted with the aim to reduce GvHD after human leukocyte antigen (HLA)-matched HCT. However, several groups have shown that memory T cells can also mediate alloreactive responses, in particular against mismatched HLA. We hypothesized that the relative importance of naïve vs. memory T cell alloreactivity depends on the matching status of the patient-donor pair. Specifically, we reasoned that naïve-depletion strategies will be most efficient in HLA-identical sibling HCT, where minor (m)HAg presented by self-HLA are the only targets of T cell alloreactivity, but less so in HLA-matched unrelated HCT, where HLA-DPB1 mismatches (mmDPB1) are frequent and potentially recognized through molecular mimicry by both naïve and memory T cells. Methods: In order to model T cell alloreactivity to mHAg and to major HLA mismatches post HCT, we used a quantitative in vitro assay based on co-culture of responder and stimulating cells. Naïve (CD45RA+CD45RO-) and memory (CD45RA-CD45RO+) CD4+ T cells were enriched from peripheral blood mononuclear cells from healthy individuals using microbead technology to >95% purity and used as responders. Irradiated transduced HeLa cells engineered to express single HLA-DP antigens and the necessary machinery for HLA class II antigen presentation were used to stimulate CD4+ T cells. HeLa transductants expressing the autologous (i.e. DP-matched, response restricted to mHAg) or an allogeneic (mmDPB1) DP antigen were used to challenge naïve and memory CD4+ cells from each responder. After 14 days of culture, T cells were restimulated overnight and the levels of T cell response were quantified by cell surface expression of the activation marker CD137. Results: In 36 independent T cell cultures from 8 different individuals, the overall levels of alloreactivity against mHAg were significantly lower than those against mmDPB1 (mean 50.3% vs 20.7%, p<0.0001) (Figure 1A). Consistent with current concepts, alloreactivity to mHAg was significantly higher in the naïve than in the memory subset (mean 27.7% vs 10.5%, p=0.015) (Figure 1B). This was most evident in 5/8 responders (mean 38.4% vs 13.3%, p=0.016), in particular in females under 40 years of age. In 3 of the 8 responders, mHAg alloreactivity was generally low and not significantly different between the naïve and the memory subsets (mean 10.3% vs 12.9%, p=0.73). In contrast, alloreactivity against mmDPB1 was evenly distributed between the naïve and the memory subset (mean 52.1% vs 48.5%, p=0.62) in all responders, independent of age, sex or cytomegalovirus serostatus of the responder (Figure 1C). Interestingly, naïve DPB1*04:01-restricted mHAg alloreactive CD4+ T cells were able to cross-recognize the structurally similar (i.e. permissive) DPB1*04:02 (mean 43.3%) but not the dissimilar (i.e. non-permissive) DPB1*09:01 (mean 14.1%) (Figure 1D). Moreover, when purified CD4+ cells from self-DPB1*04:01 homozygous donors were challenged with DPB1*04:02 or DPB1*09:01, naïve CD4+ T cells were the main source of alloreactive responses against the permissive mmDPB1 (mean 25.0% vs 7.4% for naïve and memory cells, respectively), while both memory (mean 50.0%) and naïve (mean 46.0%) CD4+ cells elicited strong alloresponses against the non-permissive mmDPB1. Conclusion: Our data provide the first direct experimental evidence that alloreactivity against mmDPB1 is stronger than against mHAg, and importantly that it is mediated equally by naïve and memory CD4+ T cells while the mHAg response is mediated mainly by the naïve subset. However, our data also suggests that some mmDPB1 involving structurally (and hence functionally) similar alleles (in general permissive) might behave similarly to DPB1 matches. These observations should be taken into account in clinical trials aimed at improving the outcome of unrelated HCT by selective depletion of naïve T cells. Disclosures Turki: Jazz Pharmaceuticals, CSL Behring, MSD.: Consultancy; Neovii Biotech, all outside the submitted work: Other: Travel subsidies. Beelen:Medac GmbH Wedel Germany: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document