scholarly journals Bet v 1, the major birch pollen allergen, conjugated to crystalline bacterial cell surface proteins, expands allergen-specific T cells of the Th1/Th0 phenotype in vitro by induction of IL-12

1997 ◽  
Vol 9 (12) ◽  
pp. 1867-1874 ◽  
Author(s):  
B Jahn-Schmid
2007 ◽  
Vol 178 (2) ◽  
pp. 1189-1198 ◽  
Author(s):  
Toshihiro Nagato ◽  
Hiroya Kobayashi ◽  
Mitsuru Yanai ◽  
Keisuke Sato ◽  
Naoko Aoki ◽  
...  

2000 ◽  
Vol 14 (10) ◽  
pp. 1279-1288 ◽  
Author(s):  
Monika Krebitz ◽  
Ursula Wiedermann ◽  
Dagmar Essl ◽  
Herta Steinkellner ◽  
Birgit Wagner ◽  
...  

2021 ◽  
Vol 7 (4) ◽  
pp. 262
Author(s):  
Anuja Paudyal ◽  
Govindsamy Vediyappan

Candida auris is an emerging antifungal resistant human fungal pathogen increasingly reported in healthcare facilities. It persists in hospital environments, and on skin surfaces, and can form biofilms readily. Here, we investigated the cell surface proteins from C. auris biofilms grown in a synthetic sweat medium mimicking human skin conditions. Cell surface proteins from both biofilm and planktonic control cells were extracted with a buffer containing β-mercaptoethanol and resolved by 2-D gel electrophoresis. Some of the differentially expressed proteins were excised and identified by mass spectrometry. C. albicans orthologs Spe3p, Tdh3p, Sod2p, Ywp1p, and Mdh1p were overexpressed in biofilm cells when compared to the planktonic cells of C. auris. Interestingly, several proteins with zinc ion binding activity were detected. Nrg1p is a zinc-binding transcription factor that negatively regulates hyphal growth in C. albicans. C. auris does not produce true hypha under standard in vitro growth conditions, and the role of Nrg1p in C. auris is currently unknown. Western blot analyses of cell surface and cytosolic proteins of C. auris against anti-CalNrg1 antibody revealed the Nrg1p in both locations. Cell surface localization of Nrg1p in C. auris, an unexpected finding, was further confirmed by immunofluorescence microscopy. Nrg1p expression is uniform across all four clades of C. auris and is dependent on growth conditions. Taken together, the data indicate that C. auris produces several unique proteins during its biofilm growth, which may assist in the skin-colonizing lifestyle of the fungus during its pathogenesis.


2009 ◽  
Vol 124 (1) ◽  
pp. 135-142.e21 ◽  
Author(s):  
Sakari Joenväärä ◽  
Pirkko Mattila ◽  
Jutta Renkonen ◽  
Antti Mäkitie ◽  
Sanna Toppila-Salmi ◽  
...  

Author(s):  
Yankel Chekli ◽  
Caroline Peron-Cane ◽  
Dario Dell’Arciprete ◽  
Jean-François Allemand ◽  
Chenge Li ◽  
...  

AbstractBacterial proteins exported to the cell surface play key cellular functions. However, despite the interest to study the localization of surface proteins such as adhesins, transporters or hydrolases, monitoring their dynamics in live imaging remains challenging, due to the limited availability of fluorescent probes remaining functional after secretion. In this work, we used the Escherichia coli intimin and the Listeria monocytogenes InlB invasin as surface exposed scaffolds fused with the recently developed chemogenetic fluorescent reporter protein FAST. Using both membrane permeant (HBR-3,5DM) and non-permeant (HBRAA-3E) fluorogens that fluoresce upon binding to FAST, we demonstrated that fully functional FAST can be exposed at the cell surface and specifically tagged on the external side of the bacterial envelop in both diderm and monoderm bacteria. Our work opens new avenues to study of the organization and dynamics of the bacterial cell surface proteins.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167453 ◽  
Author(s):  
Nathalie Acevedo ◽  
Adriana Bornacelly ◽  
Dilia Mercado ◽  
Per Unneberg ◽  
Irene Mittermann ◽  
...  

1997 ◽  
Vol 272 (3) ◽  
pp. L494-L503
Author(s):  
L. Chen ◽  
V. Shick ◽  
M. L. Matter ◽  
S. M. Laurie ◽  
R. C. Ogle ◽  
...  

Cell adhesion to amino acids 2179-2198 (SN-peptide) of the laminin-1 alpha1-chain is required for lung alveolar formation in vitro (M. L. Matter and G. W. Laurie. J. Cell Biol. 124: 1083-1090, 1994). The nature of the SN-peptide receptor(s) was probed with neutralizing anti-integrin monoclonal antibodies (MAb), cells lacking integrin subunits, soluble heparin, and SN-peptide columns. Cell adhesion and spreading studies confirmed the specificity of SN-peptide and revealed adhesion to be unaffected by inclusion of anti-beta1-, anti-alpha(2-6)- or anti-alpha(V)beta5-integrin MAb. Cells lacking beta1- or alpha6-integrin subunits were fully adherent. Adhesion was heparin, but not chondroitin sulfate or heparinase, sensitive, much as is alpha-dystroglycan-laminin-1 binding. Heparin eluted approximately 155- and 180-kDa cell-surface proteins from SN-peptide columns. An additional approximately 91-kDa protein was eluted by EDTA. All were unrecognized by anti-beta1-integrin MAb. SN-peptide therefore interacts with three cell-surface proteins for which the identity remains to be determined.


Sign in / Sign up

Export Citation Format

Share Document