scholarly journals High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment

Author(s):  
Kate El Bouzidi ◽  
Steven A Kemp ◽  
Rawlings P Datir ◽  
Fati Murtala-Ibrahim ◽  
Ahmad Aliyu ◽  
...  

Abstract Objectives HIV-1 integrase inhibitors are recommended as first-line therapy by WHO, though efficacy and resistance data for non-B subtypes are limited. Two recent trials have identified the integrase L74I mutation to be associated with integrase inhibitor treatment failure in HIV-1 non-B subtypes. We sought to define the prevalence of integrase resistance mutations, including L74I, in West Africa. Methods We studied a Nigerian cohort of recipients prior to and during receipt of second-line PI-based therapy, who were integrase inhibitor-naive. Illumina next-generation sequencing with target enrichment was used on stored plasma samples. Drug resistance was interpreted using the Stanford Resistance Database and the IAS-USA 2019 mutation lists. Results Of 115 individuals, 59.1% harboured CRF02_AG HIV-1 and 40.9% harboured subtype G HIV-1. Four participants had major IAS-USA integrase resistance-associated mutations detected at low levels (2%–5% frequency). Two had Q148K minority variants and two had R263K (one of whom also had L74I). L74I was detected in plasma samples at over 2% frequency in 40% (46/115). Twelve (26.1%) had low-level minority variants of between 2% and 20% of the viral population sampled. The remaining 34 (73.9%) had L74I present at >20% frequency. L74I was more common among those with subtype G infection (55.3%, 26/47) than those with CRF02_AG infection (29.4%, 20/68) (P = 0.005). Conclusions HIV-1 subtypes circulating in West Africa appear to have very low prevalence of major integrase mutations, but significant prevalence of L74I. A combination of in vitro and clinical studies is warranted to understand the potential implications.

Author(s):  
Diego Cecchini ◽  
◽  
Javier Sfalcin ◽  
Inés Zapiola ◽  
Alan Gómez ◽  
...  

Objective. Argentina has reported high levels of transmitted drug resistance (TDR), in HIV-infected pregnant women by population sequencing. We aimed to describe, in patients with TDR, the percentage of quasispecies harboring resistance mutations (RAMs) and mutational load (ML). Patients and Methods. Retrospective study in a cohort of 40 naïve HIV-infected pregnant women, whose pretreatment samples had been genotyped by TRUGENE (period 2008-2014). Samples were re-sequenced with Ultra-deep Sequencing and ML was calculated considering baseline HIV-1 RNA load multiplied by the frequency of quasispecies harboring RAMs. Results. TDR for NNRTIs, NRTIs and PIs was 17.5% (n=7 patients), 10% (n=4), 12.5% (n=5) respectively. Predominant NNRTI RAMs were K103N (n=4; 10%) and G190A/E/S (n=3; 7.5%). For NNRTIs, 78% of RAMs were present in >93.5% of viral population and ML was >1000 copies/mL (c/mL) for 89%, with a median (IQR) of 8330 c/ml (7738-29796). The following NRTI RAMs were described (per patient: % of quasispecies, ML): T215I (99.7%, 11014 c/ml); D67G (1.28%, 502 c/mL); M41L (79.8%, 88578 c/mL) and M184I (1.02%, 173 c/mL). Most frequent PI-RAMs were I85V, M46I, I50V and L90M (n=2, 5% each). For PIs, quasispecies with RAMs were <2.3% of viral population and ML was <350 c/mL for 77.8% of them. Conclusion. NNRTI-RAMs are predominant within the viral population, usually exceeding the threshold of 1000 c/mL, indicating potential higher risk of perinatal transmission. Conversely, PI mutations appear mostly as minority variants, with potential lower risk of transmission. Among NRTI, quasispecies harboring RAMs and ML values were variable.


2009 ◽  
Vol 20 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kazuya Shimura ◽  
Eiichi N Kodama

Integration is a distinctive and essential process in the HIV infection cycle and thus represents an attractive antiviral drug target. Integrase inhibitors combined with other classes of drug might contribute to long-lasting suppression of HIV type-1 (HIV-1) replication for many patients. Of the numerous potential integrase inhibitor leads that have been reported, few have reached clinical trials and only one, raltegravir, has been approved (in late 2007) for the treatment of HIV-1-infected patients. Another integrase inhibitor, elvitegravir, is currently showing promise in Phase III clinical studies. Once-daily administration of elvitegravir has a comparable antiviral activity to twice-daily of raltegravir in HIV-1-infected patients. Here, we highlight the salient features of elvitegravir: its chemical structure compared with representative integrase inhibitors, mechanism of action, in vitro and in vivo activity against HIV and other retroviruses, and the effect of integrase polymorphisms and resistance mutations on its anti-HIV activity.


2010 ◽  
Vol 55 (3) ◽  
pp. 1114-1119 ◽  
Author(s):  
Jia Liu ◽  
Michael D. Miller ◽  
Robert M. Danovich ◽  
Nathan Vandergrift ◽  
Fangping Cai ◽  
...  

ABSTRACTRaltegravir is highly efficacious in the treatment of HIV-1 infection. The prevalence and impact on virologic outcome of low-frequency resistant mutations among HIV-1-infected patients not previously treated with raltegravir have not been fully established. Samples from HIV treatment-experienced patients entering a clinical trial of raltegravir treatment were analyzed using a parallel allele-specific sequencing (PASS) assay that assessed six primary and six secondary integrase mutations. Patients who achieved and sustained virologic suppression (success patients,n= 36) and those who experienced virologic rebound (failure patients,n= 35) were compared. Patients who experienced treatment failure had twice as many raltegravir-associated resistance mutations prior to initiating treatment as those who achieved sustained virologic success, but the difference was not statistically significant. The frequency of nearly all detected resistance mutations was less than 1% of viral population, and the frequencies of mutations between the success and failure groups were similar. Expansion of pre-existing mutations (one primary and five secondary) was observed in 16 treatment failure patients in whom minority resistant mutations were detected at baseline, suggesting that they might play a role in the development of drug resistance. Two or more mutations were found in 13 patients (18.3%), but multiple mutations were not present in any single viral genome by linkage analysis. Our study demonstrates that low-frequency primary RAL-resistant mutations were uncommon, while minority secondary RAL-resistant mutations were more frequently detected in patients naïve to raltegravir. Additional studies in larger populations are warranted to fully understand the clinical implications of these mutations.


Author(s):  
Basma Abdi ◽  
Mouna Chebbi ◽  
Marc Wirden ◽  
Elisa Teyssou ◽  
Sophie Sayon ◽  
...  

Abstract Background Little is known about HIV-1 integrase inhibitor resistance in the CNS. Objectives This study aimed to evaluate integrase inhibitor resistance in CSF, as a marker of the CNS, and compare it with the resistance in plasma. Methods HIV integrase was sequenced both in plasma and CSF for 59 HIV-1 patients. The clinical and biological data were collected from clinical routine care. Results Among the 59 HIV-1 patients, 32 (54.2%) were under antiretroviral (ARV) treatment. The median (IQR) HIV-1 RNA in the plasma of viraemic patients was 5.32 (3.85–5.80) and 3.59 (2.16–4.50) log10 copies/mL versus 4.79 (3.56–5.25) and 3.80 (2.68–4.33) log10 copies/mL in the CSF of ARV-naive and ARV-treated patients, respectively. The patients were mainly infected with non-B subtypes (72.2%) with the most prevalent recombinant form being CRF02_AG (42.4%). The HIV-1 integrase sequences from CSF presented resistance mutations for 9/27 (33.3%) and 8/32 (25.0%) for ARV-naive (L74I, n = 3; L74I/M, n = 1; T97A, n = 1; E157Q, n = 4) and ARV-treated (L74I, n = 6; L74M, n = 1; T97A, n = 1; N155H, n = 1) patients, respectively. Integrase inhibitor resistance mutations in CSF were similar to those in plasma, except for 1/59 patients. Conclusions This work shows similar integrase inhibitor resistance profiles in the CNS and plasma in a population of HIV-1 viraemic patients.


2020 ◽  
Author(s):  
Billal Musah Obeng ◽  
Evelyn Yayra Bonney ◽  
Lucy Asamoah-Akuoko ◽  
Nicholas Israel Nii-Trebi ◽  
Gifty Mawuli ◽  
...  

Abstract Background: Detection of HIV-1 transmitted drug resistance (TDR) and subtype diversity (SD) are public health strategies to assess current HIV-1 regimen and ensure effective therapeutic outcomes of ART among HIV-1 patients. Globally, limited data exist on TDR and SD among blood donors. In this study, drug resistance mutations and subtype diversity among HIV-1 sero-positive blood donors in Accra, Ghana was characterized.Methods: Purposive sampling method was used to collect 81 HIV sero-positive blood samples from the Southern Area Blood Center and confirmed by serology as HIV-1 and/or HIV-2. Viral RNA was only extracted from plasma samples confirmed as HIV-1 positive. Complementary DNA (cDNA) was synthesized using the RNA as a template and subsequently amplified by nested PCR with specific primers. The expected products were verified, purified and sequenced. Neighbor-joining tree with the Kimura’s 2-parameter distances was generated with the RT sequences using Molecular Evolutionary Genetic Analysis version 6.0 (MEGA 6.0).Results: Out of the 81 plasma samples, 60 (74%) were confirmed as HIV-1 sero-positive by INNO-LIA HIVI/II Score kit with no HIV-2 and dual HIV-1/2 infections. The remaining samples, 21 (26%) were confirmed as HIV sero-negative. Of the 60 confirmed positive samples, (32) 53% and (28) 50% were successfully amplified in the RT and PR genes respectively. Nucleotide sequencing of amplified samples revealed the presence of major drug resistance mutations in two (2) samples; E138A in one sample and another with K65R. HIV-1 Subtypes including subtypes A, B, CRF02_AG and CRF09_cpx were found. Conclusion: This study found major drug resistance mutations, E138A and K65R in the RT gene that confer high level resistance to most NNRTIs and NRTI respectively. CRF02_AG was most predominant, the recorded percentage of subtype B and the evolutionary relationship inferred by phylogenetic analysis suggest possible subtype importation. The data obtained would inform the selection of drugs for ART initiation to maximize therapeutic options in drug-naïve HIV-1 patients in Ghana.


2014 ◽  
Vol 58 (6) ◽  
pp. 3233-3244 ◽  
Author(s):  
Craig Fenwick ◽  
Ma'an Amad ◽  
Murray D. Bailey ◽  
Richard Bethell ◽  
Michael Bös ◽  
...  

ABSTRACTBI 224436 is an HIV-1 integrase inhibitor with effective antiviral activity that acts through a mechanism that is distinct from that of integrase strand transfer inhibitors (INSTIs). This 3-quinolineacetic acid derivative series was identified using an enzymatic integrase long terminal repeat (LTR) DNA 3′-processing assay. A combination of medicinal chemistry, parallel synthesis, and structure-guided drug design led to the identification of BI 224436 as a candidate for preclinical profiling. It has antiviral 50% effective concentrations (EC50s) of <15 nM against different HIV-1 laboratory strains and cellular cytotoxicity of >90 μM. BI 224436 also has a low, ∼2.1-fold decrease in antiviral potency in the presence of 50% human serum and, by virtue of a steep dose-response curve slope, exhibits serum-shifted EC95values ranging between 22 and 75 nM. Passage of virus in the presence of inhibitor selected for either A128T, A128N, or L102F primary resistance substitutions, all mapping to a conserved allosteric pocket on the catalytic core of integrase. BI 224436 also retains full antiviral activity against recombinant viruses encoding INSTI resistance substitutions N155S, Q148H, and E92Q. In drug combination studies performed in cellular antiviral assays, BI 224436 displays an additive effect in combination with most approved antiretrovirals, including INSTIs. BI 224436 has drug-likein vitroabsorption, distribution, metabolism, and excretion (ADME) properties, including Caco-2 cell permeability, solubility, and low cytochrome P450 inhibition. It exhibited excellent pharmacokinetic profiles in rat (clearance as a percentage of hepatic flow [CL], 0.7%; bioavailability [F], 54%), monkey (CL, 23%;F, 82%), and dog (CL, 8%;F, 81%). Based on the excellent biological and pharmacokinetic profile, BI 224436 was advanced into phase 1 clinical trials.


Author(s):  
Nawaid Hussain Khan ◽  
Mikashmi Kohli ◽  
Kartik Gupta ◽  
Bimal Kumar Das ◽  
Ravindra Mohan Pandey ◽  
...  

Introduction: The present study aimed to report the prevalent HIV-1 drug-resistant mutations in patients with HIV-1 alone and tuberculosis (TB) coinfection alone to improve our understanding of the mutation patterns and aid treatment decisions. Methods: Patients with HIV-1 and HIV-TB on treatment for more than 1 year with suspected failure were recruited. Sequencing of protease and two-thirds of the region of reverse transcriptase gene was done for drug-resistant mutations. Results: In the HIV-TB group (n = 25), 88%, 92%, and 12% had mutations to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs), respectively. In the HIV-alone group (n = 25), 84%, 100%, and 4% had mutations to NRTIs, NNRTIs, and PIs, respectively. M184V, M41L, D67N, G190A, A98G, and K103N were the most common mutations seen. Conclusion: There is a high prevalence of drug-resistant mutations in HIV and HIV-TB coinfected patients.


2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Mabeya Sepha ◽  
Nyamache Anthony ◽  
Ngugi Caroline ◽  
Nyerere Andrew ◽  
Lihana Raphael

BACKGROUND: Antiretroviral therapy containing an integrase strand transfer inhibitor plus two Nucleoside Reverse Transcriptase inhibitors has now been recommended for treatment of HIV-1-infected patients. This thus determined possible pre-existing integrase resistance associated mutations in the integrase gene prior to introduction of integrase inhibitors combination therapy in Kenya.METHODS: Drug experienced HIV patients were enrolled at Kisii Teaching and Referral in Kenya. Blood specimens from (33) patients were collected for direct sequencing of HIV-1 polintegrase genes. Drug resistance mutations were interpreted according to the Stanford algorithm and phylogenetically analysed using insilico tools.RESULTS: From pooled 188 Kenyan HIV integrase sequences that were analysed for drug resistance, no major mutations conferring resistance to integrase inhibitors were detected. However, polymorphic accessory mutations associated with reduced susceptibility of integrase inhibitors were observed in low frequency; M50I (12.2%), T97A (3.7%), S153YG, E92G (1.6%), G140S/A/C (1.1%) and E157Q (0.5%). Phylogenetic analysis (330 sequences revealed that HIV-1 subtype A1 accounted for majority of the infections, 26 (78.8%), followed by D, 5 (15.2%) and C, 2 (6%).CONCLUSION: The integrase inhibitors will be effective in Kenya where HIV-1 subtype A1 is still the most predominant. However, occurring polymorphisms may warrant further investigation among drug experienced individuals on dolutegravir combination or integrase inhibitor treatment. 


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S868-S868
Author(s):  
Sabina Holland ◽  
Allison DeLong ◽  
Tao Liu ◽  
Anna Makaretz ◽  
Mia Coetzer ◽  
...  

Abstract Background Cost still limits HIV-1 viral load (VL) routine monitoring in resource limited settings (RLS), preventing early detection of virologic failure (VF). Pooled VL testing reduces cost over individual testing (IND). We previously showed in simulation, that additional cost benefits over previously-used pooling deconvolution algorithms can be achieved by using low-cost, routinely-collected clinical markers to determine the order for VL testing in deconvolution (termed marker-assisted minipool plus algorithm; mMPA). This algorithm has not been assessed in-vitro. Methods 150 samples from 99 Ghanaian adults with HIV on first-line therapy (VF 17%; CD4-VL correlation −0.35) were used to construct 30, 5-sample pools: n = 10 with 0, n = 5 with 1, and n = 15 with 2 individuals with VF. VL testing was with Abbott M2000. Accuracy, number of tests and rounds of testing to deconvolute pools were estimated using four strategies: (1) IND; (2) Minipooling (MP); (3) Minipooling with algorithm (MPA); and (4) mMPA. Results Compared with IND, MP and MPA, mMPA reduced total number of tests per pool needed to ascertain VF: MP average 4.3 (95% confidence interval (CI) 3.5–5.2, p> 0.05), MPA 3.0 (95% CI 2.4–3.5, P < 0.001), and mMPA 2.5 (CI 2.0–3.0, P < 0.001). Compared with MP and MPA, mMPA further reduced VL tests by 42% (1.9 tests/pool, CI 1.3–2.4, P < 0.001) and 17% (0.5, CI 0.2–0.8, p = 0.004); and required fewer testing rounds than MPA by 17% (P < 0.01), thus producing results quicker. IND and MP had 100% sensitivity and specificity. MPA and mMPA had similar sensitivity of 96.1% (MPA CI 90.7–100%; mMPA CI 88.0–100.0%) and specificity of 99.5% and 99.2% (98.5–100.0% for MPA and 97.5–100.0% for mMPA). Specifically, 3/150 samples were misclassified with MPA and mMPA: one suppression as VF, and two VF as suppressed. Conclusion Laboratory evaluation confirms that deconvolution using mMPA with CD4 or other routinely-collected clinical information as low-cost biomarkers reduces the number of VL assays required to identify VF in a setting with a low prevalence of VF. Implementation of pooled VL testing using mMPA for deconvolution may increase the availability of VL monitoring in RLS. Work is ongoing to reduce complexity and misclassification, required prior to widespread implementation. Disclosures All authors: No reported disclosures.


2019 ◽  
Vol 75 (3) ◽  
pp. 648-655 ◽  
Author(s):  
Scott L Letendre ◽  
Anthony Mills ◽  
Debbie Hagins ◽  
Susan Swindells ◽  
Franco Felizarta ◽  
...  

Abstract Background Long-acting (LA) formulations of cabotegravir, an HIV integrase inhibitor, and rilpivirine, an NNRTI, are in development as monthly or 2 monthly intramuscular (IM) injections for maintenance of virological suppression. Objectives To evaluate cabotegravir and rilpivirine CSF distribution and HIV-1 RNA suppression in plasma and CSF in HIV-infected adults participating in a substudy of the Phase 2b LATTE-2 study (NCT02120352). Methods Eighteen participants receiving cabotegravir LA 400 mg + rilpivirine LA 600 mg IM [every 4 weeks (Q4W), n = 3] or cabotegravir LA 600 mg + rilpivirine LA 900 mg IM [every 8 weeks (Q8W), n = 15] with plasma HIV-1 RNA &lt;50 copies/mL enrolled. Paired steady-state CSF and plasma concentrations were evaluable in 16 participants obtained 7 (±3) days after an injection visit. HIV-1 RNA in CSF and plasma were assessed contemporaneously using commercial assays. Results Median total CSF concentrations in Q4W and Q8W groups, respectively, were 0.011 μg/mL and 0.013 μg/mL for cabotegravir (0.30% and 0.34% of the paired plasma concentrations) and 1.84 ng/mL and 1.67 ng/mL for rilpivirine (1.07% and 1.32% of paired plasma concentrations). Cabotegravir and rilpivirine total CSF concentrations exceeded their respective in vitro EC50 for WT HIV-1 (0.10 ng/mL and 0.27 ng/mL, respectively). All 16 participants had HIV-1 RNA &lt;50 copies/mL in plasma and CSF, and 15 of 16 participants had HIV-1 RNA &lt;2 copies/mL in CSF. Conclusions A dual regimen of cabotegravir LA and rilpivirine LA achieved therapeutic concentrations in the CSF resulting in effective virological control in CSF.


Sign in / Sign up

Export Citation Format

Share Document