Note on Solid State Fluorescence Emission of Ochratoxins A and B on Silica Gel

1970 ◽  
Vol 53 (4) ◽  
pp. 696-697
Author(s):  
Fun Sun Chu

Abstract The fluorescence emission spectra of ochratoxins A and B on silica gel have been determined. The emission maxima for both toxins were found to be around 475 nm, with excitation maxima at 340 nm for ochratoxin A and 325 nm for ochratoxin B.

1968 ◽  
Vol 51 (6) ◽  
pp. 1190-1192
Author(s):  
James A Robertson ◽  
Walter A Pons

Abstract The solid state fluorescence emission maxima of aflatoxins B1, B2, G1, and G2 on silica gel range from 427 to 455 mµ, with excitation maxima at 368—369 mµ. Both the order and the magnitude of the relative fluorescence intensities of individual aflatoxins are different in solution and in the solid state on silica gel.


1984 ◽  
Vol 295 ◽  
pp. 123-128 ◽  
Author(s):  
Daniel Mario Alperin ◽  
Norberto Daniel Iusem ◽  
Victor Idoyaga-Vargas ◽  
Hector Carminatti

F1000Research ◽  
2019 ◽  
Vol 2 ◽  
pp. 82
Author(s):  
Saurabh Gautam ◽  
Munishwar N Gupta

Direct comparison between fluorescence spectra of a sample in solution and solid state form is valuable to monitor the changes in protein structure when it is “dried” or immobilized on a solid surface (for biocatalysis or sensor applications). We describe here a simple method for recording fluorescence emission spectra of protein powders without using any dedicated accessory for solid samples in a high-throughput format. The 96-well plate used in our studies, was coated black from all the sides and the excitation and emission paths are identical and are from the top of the well. These two features minimize scatter and provide fairly noise free spectra. Even then the fluorescence intensity may be dependent upon many factors such as the extent of protein aggregation, morphology and sizes of the protein particles. Hence, (changes in) λmax emission may be a more reliable metric in the case of fluorescence spectra of proteins in the solid state. However, any large changes in the intensity could indicate changes in the microenvironment of the fluorophore. The fluorescence emission spectra were blue-shifted (4 to 9 nm), showed an increase in the intensity for different proteins studied upon lyophilization, and were similar to what has been reported by others using available commercial accessories for solid state samples. After validating that our method worked just as well as the dedicated accessories, we applied the method to compare the fluorescence emission spectra of α-chymotrypsin in solution, precipitated form, and the lyophilized powder form. We further examined the fluorescence emission spectra of green fluorescent protein (GFP) in solution and solid form. We also analyzed fluorescence resonance energy transfer (FRET) between tryptophan (Trp57) and the cyclic chromophore of GFP. These findings pointed towards the change in the microenvironment around the cyclic chromophore in GFP upon lyophilization.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 82
Author(s):  
Saurabh Gautam ◽  
Munishwar N Gupta

A simple method to determine fluorescence emission spectra of proteins in solid state is described. The available commercial accessories can only accommodate solid samples and hence do not allow a direct comparison between fluorescence spectra of a sample in solution and solid state form. Such comparisons are valuable to monitor the changes in protein structure when it is “dried” or immobilized on a solid surface (for biocatalysis or sensor applications). The commercially available accessories also do not allow working in a high throughput mode. We describe here a simple method for recording fluorescence emission spectra of protein powders without using any dedicated accessory for solid samples. This method works with a 96-well plate format. It enables the comparison of fluorescence spectra of a sample in a solid state with solution spectra, using comparable quantities of protein. The fluorescence emission spectra were blue-shifted (4 to 9 nm), showed an increase in the intensity for different proteins studied upon lyophilization, and were similar to what has been reported by others using available commercial accessories for solid state samples. After validating that our method worked just as well as the dedicated accessories, we applied the method to compare the fluorescence emission spectra of α-chymotrypsin in solution, precipitated form and the lyophilized powder form. α-Chymotrypsin in solution showed a λmax of 335 nm while a high-activity preparation of the same enzyme for non-aqueous media, known as enzyme precipitated and rinsed with propanol (EPRP), showed an increase in the intensity of the fluorescence emission spectra. However, there was a small red shift of 2 nm (λmax of 337 nm) in contrast to lyophilized powder which showed a λmax of 328 nm. This is due to a difference in the tertiary structure of the protein as well as the microenvironment of aromatic residues between the two preparations. We further examined the fluorescence emission spectra of green fluorescent protein (GFP) in solution and solid form. The relative fluorescence intensity of lyophilized GFP powder was decreased significantly to 17% as compared to GFP in solution, and showed a red shift of 4 nm in the emission λmax. It was found that fluorescence resonance energy transfer (FRET) between tryptophan (Trp57) and the cyclic chromophore of GFP was significantly diminished. This indicated the change in the microenvironment around the cyclic chromophore in GFP upon lyophilization.


The Analyst ◽  
2018 ◽  
Vol 143 (16) ◽  
pp. 3900-3906 ◽  
Author(s):  
Yang Wang ◽  
Hongkun Xiang ◽  
Rongrong Zhao ◽  
Chusen Huang

We developed a new technique combining a renewable test strip and solid-state ratiometric fluorescence readout for the fast capture and quantification of N2H4 gas.


2014 ◽  
Vol 940 ◽  
pp. 11-15
Author(s):  
Jun Qin Feng ◽  
Jun Fang Chen

Zinc nitride films were deposited by ion sources-assisted magnetron sputtering with the use of Zn target (99.99% purity) on 7059 glass substrates. The films were characterized by XRD, SEM and EDS, the results of which show that the polycrystalline zinc nitride thin film can be grown on the glass substrates, the EDS spectrum confirmed the chemical composition of the films and the SEM images revealed that the zinc nitride thin films have a dense structure. Ultraviolet-visible-near infrared spectrophotometer was used to study the transmittance behaviors of zinc nitride thin films, which calculated the optical band gap by Davis Mott model. The results of the fluorescence emission spectra show the zinc nitride would be a direct band gap semiconductor material.


1992 ◽  
Vol 271 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

ABSTRACTIn situ optical methods are reviewed for characterization of phase transformation processes and evaluation of residual stress in solution-deposited metastable oxide films. Such low density films most often are deposited as disordered phases making them prone to crystallization and attendant densification when subjected to increased temperature and/or applied pressure. Inherent stress imparted during film deposition and its evolution during the transformation are evaluated from phonon frequency shifts seen in Raman spectra (TiO2) or from changes in the laser-induced fluorescence emission spectra for films containing rare earth (Sm+3:Y3Al5O12) or transition metal (Cr+3 :Al2O3) dopants. The data in combination with measured increases in line intensities intrinsic to the evolving phase are used to follow crystallization processes in thin films. In general, film deposition parameters are found to influence the crystallite ingrowth kinetics and the magnitude of stress and stress relaxation in the film during the transformation. The utility of these methods to probe crystallization phenomena in oxide films will be addressed.


2012 ◽  
Vol 19 (3) ◽  
pp. 943-947 ◽  
Author(s):  
Z. Parang ◽  
A. Keshavarz ◽  
S. Farahi ◽  
S.M. Elahi ◽  
M. Ghoranneviss ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document