Analytical Strategy for the Regulatory Control of Residues of Chloramphenicol in Meat: Preliminary Studies in Milk

1992 ◽  
Vol 75 (2) ◽  
pp. 245-256 ◽  
Author(s):  
H J Keukens ◽  
M M L Aerts ◽  
W A Traag ◽  
J F M Nouws ◽  
W G De Ruig ◽  
...  

Abstract An analytical strategy Is described for the regulatory control of residues of the veterinary drug chloramphenicol (CAP) In meat. Screening is performed directly in meat by a simple immunochemical card test with a limit of detection of about 2 μg/kg. Statistical evaluation of a collaborative study involving 13 laboratories showed that at CAP concentrations exceeding 8 μg/kg, no false negatives are found (N = 554). In positive samples, CAP Is quantltated with a routinely applicable, collaboratively tested column liquid chromatographic method with a limit of detection of about 1 μg/kg. At concentrations exceeding 10 μg/kg, the Identity of CAP Is established by Its UV spectrum obtained by using diode-array UV/VIS detection. A further confirmation can be obtained by the combination of gas chromatography/ mass selective detection In the electron Impact mode. Using 2 diagnostic Ions (m/z 225 and 208), the limit of identification Is about 5 μg/kg. The combination of the different analytical principles ensures reliable quantitation and Identification of CAP in positive samples, as established experimentally in Incurred samples and spiked samples (n > 100), and theoretically by the estimation of the uncertainty factor. The proposed set-up makes a regulatory program possible in which screening can be performed In a simple laboratory environment, followed by quantitation and Identification under more sophisticated conditions. Preliminary experiments Indicate that the analytical strategy Is also applicable to the control of CAP in milk. Application of mass spectrometry with negative chemical ionization permits the confirmation of CAP concentrations as low as 0.2 μg/L.

1984 ◽  
Vol 67 (2) ◽  
pp. 312-316
Author(s):  
Alfred D Campbell ◽  
Octave J Francis ◽  
Roberta A Beebe ◽  
Leonard Stoloff ◽  
◽  
...  

Abstract Two methods for determining aflatoxins in peanut butter, one using normal phase and the other reverse phase liquid chromatography (LC), were studied by 8 and 10 collaborators, respectively. Fluorescence detection was used for the determinative step in both methods. For reverse phase LC, aflatoxins B1 and G1 were converted to B2a and G2a; for normal phase LC, a silica gel-packed flow cell was placed in the irradiating light path of the detector. The samples included spiked and naturally contaminated peanut butter with total aflatoxin levels from about 5 to 20 ng/g and controls in a balanced pair design. For the normal phase LC method, recoveries of B1, B2, G1, and G2 from spiked samples averaged 79, 92, 74, and 88%, respectively; for the reverse phase method, the recoveries were 103, 104, 89, and 163%. For the normal phase LC method, pooled repeatabilities were 20, 23, 28, and 17% for B1, B2, G1, and G2, respectively; for the reverse phase method, the repeatabilities were 19, 22, 38, and 31%. For the normal phase method, pooled reproducibilities were 34, 33, 39, and 34% for B1, B2, G1, and G2, respectively; for the reverse phase method, the reproducibilities were 32, 46, 51, and 52%. Both methods show an improved limit of detection and better within-laboratory precision over current AOAC methods; however, between-laboratory precision is no better, and the reverse phase method shows evidence of interferences being measured. For these reasons and because of no benefits of present value, neither method was submitted for adoption as official first action.


2000 ◽  
Vol 83 (6) ◽  
pp. 1377-1383 ◽  
Author(s):  
A Catherine Entwisle ◽  
Alison C Williams ◽  
Peter J Mann ◽  
Philip T Slack ◽  
John Gilbert

Abstract A collaborative study was conducted to evaluate a liquid chromatographic (LC) method with immunoaffinity column cleanup for determination of ochratoxin A. The method was tested at 3 concentration levels of ochratoxin A in barley, which represent possible future European regulatory limits. The test portion was extracted with acetonitrile–water by blending at high speed. The extract was filtered, diluted with phosphate-buffered saline (PBS), and applied to an ochratoxin A immunoaffinity column. The column was washed with water and the ochratoxin A eluted with methanol. The solvent was then evaporated and the residue redissolved in injection solvent. After injection of this solution onto reversed-phase LC column, ochratoxin A was measured by fluorescence detection. Eight samples of low level naturally contaminated barley and 2 samples of blank barley (ochratoxin A not found at the limit of detection of 0.2 μg/kg at the signal-to-noise ratio of 3 to 1) were sent, along with ampules of ochratoxin A, calibrant, and spiking solutions, to 15 laboratories in 13 different European countries. Test portions were spiked with ochratoxin A at levels of 4 ng/g, and recoveries ranged from 65 to 113%. Based on results for spiked samples (blind duplicates) and naturally contaminated samples (blind duplicates at 3 levels), the relative standard deviation for repeatability (RSDr) ranged from 4 to 24%, and the relative standard deviation for reproducibility (RSDR) ranged from 12 to 33%. The method showed acceptable within- and between-laboratory precision, as evidenced by HORRAT values, at the low level of determination for ochratoxin A in barley.


2020 ◽  
Vol 16 (3) ◽  
pp. 277-286
Author(s):  
Amal A. El-Masry ◽  
Mohammed E. A. Hammouda ◽  
Dalia R. El-Wasseef ◽  
Saadia M. El-Ashry

Background: The first highly sensitive, rapid and specific green microemulsion liquid chromatographic (MELC) method was established for the simultaneous estimation of fluticasone propionate (FLU) and azelastine HCl (AZL) in the presence of their pharmaceutical dosage form additives (phenylethyl alcohol (PEA) and benzalkonium chloride (BNZ)). Methods: The separation was performed on a C18 column using (o/w) microemulsion as a mobile phase which contains 0.2 M sodium dodecyl sulphate (SDS) as surfactant, 10% butanol as cosurfactant, 1% n-octanol as internal phase and 0.3% triethylamine (TEA) adjusted at pH 6 by 0.02 M phosphoric acid; with UV detection at 220 nm and programmed with flow rate of 1 mL/min. Results: The validation characteristics e.g. linearity, lower limit of quantification (LOQ), lower limit of detection (LOD), accuracy, precision, robustness and specificity were investigated. The proposed method showed linearity over the concentration range of (0.5-25 µg/mL) and (0.1-25 µg/mL) for FLU and AZL, respectively. Besides that, the method was adopted in a short chromatographic run with satisfactory resolution factors of (2.39, 3.78 and 6.74 between PEA/FLU, FLU/AZL and AZL/BNZ), respectively. The performed method was efficiently applied to pharmaceutical nasal spray with (mean recoveries ± SD) (99.80 ± 0.97) and (100.26 ± 0.96) for FLU and AZL, respectively. Conclusion: The suggested method was based on simultaneous determination of FLU and AZL in the presence of PEA and BNZ in pure form, laboratory synthetic mixture and its combined pharmaceutical dosage form using green MELC technique with UV detection. The proposed method appeared to be superior to the reported ones of being more sensitive and specific, as well as the separation was achieved with good performance in a relatively short analysis time (less than 7.5 min). Highly acceptable values of LOD and % RSD make this method superior to be used in quality control laboratories with of HPLC technique.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 32-37
Author(s):  
Vijaya Lakshmi Marella ◽  
Chaitanya S. N ◽  

A selective and sensitive reverse phase High Performance Liquid Chromatographic method has been developed and validated for the estimation of lornoxicam in bulk, pharmaceutical dosage forms and in dissolution samples. The analysis was performed isocratically on an Inertsil column (250* 4.6 mm, 5 µm) using a mass spectrometric compatible mobile phase of 10 mM ammonium acetate: acetonitrile (50:50 V/V) at a flow rate of 1 mL/min.The detection wavelength was 290 nm. The retention time was found to be 4.573 min for lornoxicam. The linearity of the method has been satisfied with Beer Lambert’s law in the concentration range of 5-25 µg/mL with a correlation coefficient of 0.9988. The mean recoveries assessed for lornoxicam were in the range of 100.39-101.86 %, indicating good accuracy of the method. The limit of detection and limit of quantification were found to be 0.03 and 0.11 µg/mL, respectively. The developed method has been statistically validated in accordance with ICH guidelines and found to be mass spectrometric compatible, simple, precise, and accurate with the prescribed values. Thus, the proposed method was successfully applied for the estimation of lornoxicam in routine quality control analysis of bulk, formulations and in dissolution samples.


Author(s):  
Bhupender Tomar ◽  
Ankita Sharma ◽  
Inder Kumar ◽  
Sandeep Jain ◽  
Pallavi Ahirrao

A simple, precise, and accurate reverse phase high performance liquid chromatographic method (RP-HPLC) was developed and validated for the estimation of the combination of 5- Fluorouracil (5-FU) and Imiquimod in active pharmaceutical ingredients (APIs). The method was carried out on Phenomenex C18 (250 × 4.6mm I.D., 5𝜇m) using isocratic elution mode. The mobile phase was used as Acetonitrile: 10mM potassium dihydrogen orthophosphate: triethylamine (40:59.9:0.1, v/v, pH 4.5 with orthophosphoric acid) and Water: ACN (50:50 v/v) was used as a diluent. The concentration of solvents was 1-20µg/ml and the volume of injection was 20µl with the flow rate of 1.2ml/min. The retention times for 5-FU and Imiquimod were found to be 1.9±0.5 and 6.6±0.5 min respectively. The absorption maxima of 5FU and Imiquimod were found 267nm and 227nm respectively. The method was validated as per ICH guidelines. All the data were found within the specified limits. The limit of detection (LOD) and limit of quantification (LOQ) of 5- Fluorouracil were found to be 0.015μg/mL and 0.048 μg/mL, respectively, and Imiquimod was found to be 0.078μg/mL and 0.237μg/mL, respectively. The method developed in the present study was found to be sensitive, specific, and precise and can be applied for the simultaneous estimation of 5-FU and Imiquimod.


Sign in / Sign up

Export Citation Format

Share Document