scholarly journals Determination of Low-Level Residual Ethylene Oxide by Using Solid-Phase Microextraction and Gas Chromatography

2002 ◽  
Vol 85 (6) ◽  
pp. 1205-1209 ◽  
Author(s):  
Kamal Ayoub ◽  
Leonard Harris ◽  
Bill Thompson

Abstract Current methods of analysis for ethylene oxide (EO) in medical devices include headspace and simulated-use extractions followed by gas chromatography with either a packed or a capillary column. The quantitation limits are about 0.5–1.0 μg/g for a packed column and about 0.1–0.2 μg/g for a capillary column. The current allowable levels of EO on medical devices sterilized with EO gas as outlined in International Organization for Standardization (ISO) 10993-7 may be significantly reduced from current levels by applying the ISO Draft International Standard 10993-17 method for establishing allowable limits. This may require EO test methods with detection and quantitation limits that are much lower than those of the currently available methods. This paper describes a new method that was developed for the determination of low-level EO by solid-phase microextraction using the direct-immersion method. Factors such as temperature and stirring were found to affect absorption efficiency and absorption time. A low extraction temperature (about 6°C) was found to be more efficient than room-temperature extraction. Stirring was found to reduce absorption time by about 50%. Under these conditions, detection and quantitation limits of 0.002 and 0.009 μg/g, respectively, were obtained by using a capillary column. As a result, this method makes compliance with lower EO limits feasible.

2014 ◽  
Vol 881-883 ◽  
pp. 61-64
Author(s):  
Zhao Xi Fang ◽  
Guo Qin Liu ◽  
Xue De Wang ◽  
Li Juan Han ◽  
Bing Ge Liu

This paper was to develop a simple and rapid headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography–mass spectrometry (GC-MS) for the determination of volatiles compounds from the roasted sesame oil (RSO). A HP-5MS capillary column (30 m × 0.25 mm I.D. × 0.25 mm film thick) was used for GC-MS, and a 50/30 μm divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used to extract volatiles compounds. The condition was optimized by varying the sample-to-headspace ratio (0.5-2.5 g/15 ml), extraction time (10-50 min) and Splitless time (0.5-4 min). The results showed that the optimal operating conditions occurred at (extraction temperature:40°C, sample-to-headspace ratio: 1.5 g/15 ml, extraction time: 40 min, Splitless time: 1 min) for the analyze method.


Sign in / Sign up

Export Citation Format

Share Document