scholarly journals Development and Validation of Column High-Performance Liquid Chromatographic and Ultraviolet Spectrophotometric Methods for Citalopram in Tablets

2008 ◽  
Vol 91 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Jlia Menegola ◽  
Martin Steppe ◽  
Elfrides E S Schapoval

Abstract Column high-performance liquid chromatographic (LC) and UV spectrophotometric methods for the quantitative determination of citalopram, a potent and selective serotonin reuptake inhibitor, in tablets were developed. The parameters linearity, precision, accuracy, specificity, robustness, limit of detection, and limit of quantitation were studied according to International Conference on Harmonization guidelines. Chromatography was carried out by the reversed-phase technique on an ACE C18 column with a mobile phase composed of 0.30 triethylamine solutionacetonitrile (55 + 45, v/v) adjusted to pH 6.6 with 10 ortho-phosphoric acid at a flow rate of 1.0 mL/min and 25C. The UV spectrophotometric method was performed at 239 nm. The linearity of the LC method was in the range of 10.0070.00 g/mL, and 2.5017.50 g/mL for the UV spectrophotometric method. The interday and intraday assay precision was <1.5 (relative standard deviation) for the LC and UV spectrophotometric methods. The recoveries were in the range 100.70101.35 for the LC method and 98.4898.65 for the UV spectrophotometric method. Statistical analysis by Student's t-test showed no significant difference between the results obtained by the 2 methods. The proposed methods are highly sensitive, precise, and accurate and can be used for the reliable quantitation of citalopram in tablets.

2009 ◽  
Vol 74 (12) ◽  
pp. 1455-1465 ◽  
Author(s):  
Valéria Guzsvány ◽  
Zsigmond Papp ◽  
Sanja Lazic ◽  
Ferenc Gaál ◽  
Luka Bjelica ◽  
...  

A simple first-order derivative spectrophotometric method was developed for the simultaneous determination of imidacloprid and 6-chloronicotinic acid (6-CNA). By using the zero-crossing approach, imidacloprid was determined at 249 nm and 6-CNA at 236 nm with detection limits of 0.32 and 0.17 ?g mL-1, respectively, and relative standard deviations not exceeding 1.2 % in the case of model systems. The proposed method was applied for the determination of imidacloprid and 6-CNA in commercial formulations. A conventional spectrophotometric method (at 270 nm) was also employed for the determination of the content of imidacloprid in the same commercial formulations. The results of the developed spectrophotometric methods were in good agreement with those obtained by the high-performance liquid chromatographic method.


2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Hong Yan ◽  
Pei Xu ◽  
Hai Huang ◽  
Juan Qiu

AbstractA pre-column derivatized high-performance liquid chromatographic (HPLC) method with ultraviolet-visible detection was developed to measure the concentrations of spectinomycin in fermentation broth. Derivatization reagents, 2,4-dinitrophenylhydrazine in acetonitrile (5 mg mL−1) and trifluoroacetic acid in acetonitrile (0.8 mol L−1), were added to an aliquot of the fermentation broth, and the mixture was incubated for 60 min at 70°C. The resulting derivative was separated from other compounds by isocratic elution in a reversed-phase column Zorbax SB-C18 (250 mm × 4.6 mm, 5 µm). Mobile phase consisted of acetonitrile, tetrahydrofuran, and water (φ r = 40: 35: 25) and the flow rate was 1.0 mL min−1. The detection wavelength was 415 nm. The standard curve for spectinomycin sulfate was linear with correlation coefficients of 0.9997 in the range of 25 µg mL−1 to 600 µg mL−1. The relative standard deviation values ranged from 0.43 % to 2.18 % depending on the concentration of samples. The average recovery was 101.5 %. The limit of detection was 50 ng mL−1.


2012 ◽  
Vol 10 (2) ◽  
pp. 67-70
Author(s):  
Abdullah Al Masud ◽  
Mohammad Saydur Rahman ◽  
Towfika Islam ◽  
Saki Sultana ◽  
Moynul Hasan ◽  
...  

A simple, reproducible and efficient reversed phase high performance liquid chromatographic (RPHPLC) method has been developed for the estimation of a recently approved anti allergic drug, amlexanox in oral paste dosage form. The separations were carried out on a Zorbax Eclipse XBD, C18 column (150 x 4.6 mm; 5?m) at a flow rate of 1.50 ml/min. by using mobile phase comprising of mixed buffer (pH adjusted to 6.50) and methanol (50:50 v/v). The injection volume was 10 ?l and the peaks were detected at 244 nm. The linear dynamic range found to be in the concentration range of 15-35 ?g/ml and coefficient of correlation was found to be 0.999. The %RSD value was below 2.0 for intra-day and inter-day precision which indicated that the method was highly precise. The LOD (Limit of detection) and LOQ (Limit of quantitation) were found to be 3.8 ng/ml and 12.5 ng/ml, respectively which revealed that the method was highly sensitive. The percentage recovery of amlexanox ranged from 99.31 to 99.75%, indicating the accuracy of the method and absence of interference from the excipients present in the formulation. The proposed method was simple, fast, accurate and reproducible and hence can be applied for routine quality control operations of amlexanox in oral paste dosage form. Key words: Amlexanox, Anti allergic, RP-HPLC, LOD, LOQ. DOI: http://dx.doi.org/10.3329/dujps.v10i2.11782 Dhaka Univ. J. Pharm. Sci. 10(2): 67-70, 2011 (December)


2008 ◽  
Vol 91 (3) ◽  
pp. 530-535 ◽  
Author(s):  
Bashar A AlKhalidi ◽  
Majed Shtaiwi ◽  
Hatim S AlKhatib ◽  
Mohammad Mohammad ◽  
Yasser Bustanji

Abstract A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 135 g/mL and precision (relative standard deviation <1.5). The LOD and LOQ were 0.23 and 0.72 g/mL, respectively, and good recoveries were achieved (98101.8). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.


2007 ◽  
Vol 90 (5) ◽  
pp. 1266-1271 ◽  
Author(s):  
Daniela Dal Molim Ghisleni ◽  
Martin Steppe ◽  
Elfrides E S Schapoval

Abstract High-performance liquid chromatographic (LC) and ultraviolet derivative spectrophotometric (UVD) methods were developed and validated for the quantitative determination of epinastine hydrochloride in coated tablets. LC was performed on a reversed-phase RP-18 column with a mobile phase composed of 0.3 triethylamine (pH adjusted to 4.0 with 10 orthophosphoric acid)methanol (60 + 40, v/v). The first-order derivative method was performed at 243.8 nm using HCl and methanol as the solvent. The methods were validated according to U.S. Pharmacopoeia and International Conference on Harmonization guidelines. The statistical analysis by Student's t-test showed no significant difference between the results obtained by the 2 methods. The proposed methods were found to be simple, rapid, precise, accurate, robust, and sensitive, allowing perfect interchange. The LC and UVD methods can be used in the routine quantitative determination of the epinastine hydrochloride in coated tablets.


2019 ◽  
Vol 31 (5) ◽  
pp. 1002-1008
Author(s):  
Somana Siva Prasad ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel reversed-phase high performance liquid chromatographic (HPLC) technique for the determination of everolimus (Isomer-B) and its impurities in the tablet dosage form has been optimized using analytical quality by design (QbD) approach. All the compounds are monitored with the photodiode array (PDA) detector at 280 nm and the parameters namely; precision, accuracy, specificity, stability, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The quantitation limits of IMP-A, IMP-B, IMP-C, IMP-D, IMP-E, Sirolimus and TGR are found to be 0.08, 0.08, 0.10, 0.10, 0.10, 0.08 and 0.08, respectively. Recovery studies from 0.9 mg/L to 9.0 mg/L are performed for all impurities and the values were obtained between 85-110 %. Injection volume and test concentrations have been optimized to achieve LOQ values under the reporting threshold. The whole technique is developed and validated as per International Council for Harmonization (ICH) guidelines. The proposed method is robust, sensitive, rapid and successful and helpful in the regions where regulatory agencies recommend HPLC analytical method.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Darinka Brodnjak Vončina ◽  
Maša Islamčivic Razboršek ◽  
Marjana Simonič

The aim of this study was to develop a method for identification and quantification of phenolic acids in different wine samples. The simple reversed-phase HPLC-UV method for simultaneous determination of p-coumaric and ferulic acid was developed. The method was validated and working range, linearity, repeatability, accuracy, limit of quantitation LOQ and limit of detection LOD were determined. The linearity of the method was tested in concentration ranges 0.1-1 mg L-1 and 1-10 mg L-1. The correlation coefficients (r2) were greater than 0.996 and quality coefficients (QC) ≤ 5%. Detection limit for both compounds was 0.01 mg L-1. The method is precise (RSD


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (05) ◽  
pp. 48-52
Author(s):  
A Lodhi ◽  
◽  
A Jain ◽  
B. Biswal

A validated high performance liquid chromatographic method was developed for the determination of chromium picolinate in pharmaceutical dosage forms. The analysis was performed at room temperature using a reversed-phase ODS, 5µm (250×4.6) mm column. The mobile phase consisted of acetonitrile: buffer (60:40 V/V) at a flow rate of 0.5 mL/min. The PDA-detector was set at 264 nm. The developed method showed a good linear relationship in the concentration range from 1.5 – 12.5 µg/mL with a correlation coefficient from 0.999. The limit of detection and limit of quantification were 0.0540513 and 0.1637919 µg/mL respectively.


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


Sign in / Sign up

Export Citation Format

Share Document