scholarly journals Validation of the One Broth One Plate for Salmonella Method for Detection of Salmonella Spp. in Select Food and Environmental Samples: AOAC Performance Tested MethodSM 102002

Author(s):  
Susan Alles ◽  
Brooke Roman ◽  
Quynh-Nhi Le ◽  
Magdalena Kurteu ◽  
Ezzeddine Elmerhebi ◽  
...  

Abstract Background One Broth One Plate for Salmonella (OBOP Salmonella) is a rapid and simple method for detection of Salmonella spp. in food and environmental samples using traditional culture methodology. The method utilizes single-step enrichment followed by plating to a selective/differential, chromogenic agar. Objective The purpose of the validation study was to measure the effectiveness of the OBOP Salmonella method in comparison to reference culture procedures. Methods Performance of the OBOP Salmonella method was compared to that of the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for queso fresco, smoked salmon, cantaloupe, chocolate, black pepper, chili powder, dry pet food, and sponge samples from a stainless steel surface, or to that of the U.S. Department of Agriculture Microbiology Laboratory Guidebook Chapter 4.10 method for raw ground turkey, chicken carcass rinse, and pasteurized liquid egg. Inclusivity/exclusivity, robustness, and stability/lot-to-lot consistency testing was also performed. Results In the matrix study, there were no statistically significant differences in performance between the OBOP Salmonella and reference methods, as determined by probability of detection analysis (P < 0.05), for any of the matrixes examined. All 104 Salmonella spp. strains produced positive results in inclusivity testing, and all 33 non-salmonellae exclusivity strains tested negative with the OBOP Salmonella method. Conclusions Results of the validation study show that the OBOP Salmonella method is a reliable procedure for detection of Salmonella spp. in select matrixes. The method is simple to perform, requires no specialized equipment, and produces results in as little as 37 h.

2011 ◽  
Vol 94 (5) ◽  
pp. 1467-1480
Author(s):  
Rebecca Hoerner ◽  
Jill Feldpausch ◽  
R Lucas Gray ◽  
Stephanie Curry ◽  
Zahidul Islam ◽  
...  

Abstract Reveal Salmonella 2.0 is an improved version of the original Reveal Salmonella lateral flow immunoassay and is applicable to the detection of Salmonella enterica serogroups A–E in a variety of food and environmental samples. A Performance Tested MethodSM validation study was conducted to compare performance of the Reveal 2.0 method with that of the U.S. Department of Agriculture-Food Safety and Inspection Service or U.S. Food and Drug Administration/Bacteriological Analytical Manual reference culture methods for detection of Salmonella spp. in chicken carcass rinse, raw ground turkey, raw ground beef, hot dogs, raw shrimp, a ready-to-eat meal product, dry pet food, ice cream, spinach, cantaloupe, peanut butter, stainless steel surface, and sprout irrigation water. In a total of 17 trials performed internally and four trials performed in an independent laboratory, there were no statistically significant differences in performance of the Reveal 2.0 and reference culture procedures as determined by Chi-square analysis, with the exception of one trial with stainless steel surface and one trial with sprout irrigation water where there were significantly more positive results by the Reveal 2.0 method. Considering all data generated in testing food samples using enrichment procedures specifically designed for the Reveal method, overall sensitivity of the Reveal method relative to the reference culture methods was 99%. In testing environmental samples, sensitivity of the Reveal method relative to the reference culture method was 164%. For select foods, use of the Reveal test in conjunction with reference method enrichment resulted in overall sensitivity of 92%. There were no unconfirmed positive results on uninoculated control samples in any trials for specificity of 100%. In inclusivity testing, 102 different Salmonella serovars belonging to serogroups A–E were tested and 99 were consistently positive in the Reveal test. In exclusivity testing of 33 strains of non-salmonellae representing 14 genera, 32 were negative when tested with Reveal following nonselective enrichment, and the remaining strain was found to be substantially inhibited by the enrichment media used with the Reveal method. Results of ruggedness testing showed that the Reveal test produces accurate results even with substantial deviation in sample volume or device development time.


2013 ◽  
Vol 96 (4) ◽  
pp. 842-853 ◽  
Author(s):  
Mark Mozola ◽  
Paul Norton ◽  
Susan Alles ◽  
R Lucas Gray ◽  
Jerry Tolan ◽  
...  

Abstract ANSR™ Salmonella is a new molecular diagnostic assay for detection of Salmonella spp. in foods and environmental samples. The test is based on the nicking enzyme amplification reaction (NEAR™) isothermal nucleic acid amplification technology. The assay platform features simple instrumentation, minimal labor, and, following a single-step 10–24 h enrichment (depending on sample type), an extremely short assay time of 30 min, including sample preparation. Detection is real-time using fluorescent molecular beacon probes. Inclusivity testing was performed using a panel of 113 strains of S. enterica and S. bongori, representing 109 serovars and all genetic subgroups. With the single exception of the rare serovar S. Weslaco, all serovars and genetic subgroups were detected. Exclusivity testing of 38 nonsalmonellae, mostly Enterobacteriaceae, yielded no evidence of cross-reactivity. In comparative testing of chicken carcass rinse, raw ground turkey, raw ground beef, hot dogs, and oat cereal, there were no statistically significant differences in the number of positive results obtained with the ANSR and the U.S. Department of Agriculture-Food Safety and Inspection Service or U.S. Food and Drug Administration/Bacteriological Analytical Manual reference culture methods. In testing of swab or sponge samples from five different environmental surfaces, four trials showed no statistically significant differences in the number of positive results by the ANSR and the U.S. Food and Drug Administration/Bacteriological Analytical Manual reference methods; in the trial with stainless steel surface, there were significantly more positive results by the ANSR method. Ruggedness experiments showed a high degree of assay robustness when deviations in reagent volumes and incubation times were introduced.


2016 ◽  
Vol 99 (1) ◽  
pp. 112-123
Author(s):  
Oscar Caballero ◽  
Susan Alles ◽  
Quynh-Nhi Le ◽  
R Lucas Gray ◽  
Edan Hosking ◽  
...  

Abstract Work was conducted to validate performance of the ANSR® for Listeria monocytogenes method in selected food and environmental matrixes. This DNA-based assay involves amplification of nucleic acid via an isothermal reaction based on nicking enzyme amplification technology. Following single-step sample enrichment for 16–24 h for most matrixes, the assay is completed in 40 min using only simple instrumentation. When 50 distinct strains of L. monocytogenes were tested for inclusivity, 48 produced positive results, the exceptions being two strains confirmed by PCR to lack the assay target gene. Forty-seven nontarget strains (30 species), including multiple non-monocytogenes Listeria species as well as non-Listeria, Gram-positive bacteria, were tested, and all generated negative ANSR assay results. Performance of the ANSR method was compared with that of the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedure for detection of L. monocytogenes in hot dogs, pasteurized liquid egg, and sponge samples taken from an inoculated stainless steel surface. In addition, ANSR performance was measured against the U.S. Food and Drug Administration Bacteriological Analytical Manual reference method for detection of L. monocytogenes in Mexican-style cheese, cantaloupe, sprout irrigation water, and guacamole. With the single exception of pasteurized liquid egg at 16 h, ANSR method performance as quantified by the number of positives obtained was not statistically different from that of the reference methods. Robustness trials demonstrated that deliberate introduction of small deviations to the normal assay parameters did not affect ANSR method performance. Results of accelerated stability testing conducted using two manufactured lots of reagents predicts stability at the specified storage temperature of 4°C of more than 1 year.


2014 ◽  
Vol 97 (4) ◽  
pp. 1127-1136
Author(s):  
David Claveau ◽  
Sergiy Olishevskyy ◽  
Michael Giuffre ◽  
Gabriela Martinez

Abstract ACTERO™ Listeria Enrichment Media (ACTERO Listeria) is a selective medium developed for a single-step recovery and enrichment of Listeria spp. from environmental samples. Robustness testing of the ACTERO Listeria medium demonstrated good performance when minor changes were introduced to the incubation temperature and time. All 54 Listeria strains tested, representing the most frequently isolated Listeria species from food (L. monocytogenes, L. ivanovii, L. seeligeri, L. welshimeri, and L. grayi), were successfully enriched in ACTERO Listeria. None of the 30 nontarget strains tested in the exclusivity study was recovered after incubation in ACTERO Listeria. Recovery of Listeria was consistent across three independently produced lots of the ACTERO Listeria, and the prepared medium was stable for 45 days when stored at 4°C in the dark. Matrix studies performed with environmental sponge samples from plastic and stainless steel surfaces demonstrated similar recovery of Listeria spp. in a single-step enrichment using ACTERO Listeria from plastic, and significantly better recovery from stainless steel surfaces when compared to the U.S. Department of Agriculture-Food Safety and Inspection Service reference method. The results of this study prove that ACTERO Listeria Enrichment Media can be effectively used in replacement of the two-step enrichment suggested by the reference method without affecting the recovery of Listeria spp. from environmental samples.


2014 ◽  
Vol 97 (2) ◽  
pp. 539-560
Author(s):  
Jonathan Cloke ◽  
Dorn Clark, Jr ◽  
Roy Radcliff ◽  
Carlos Leon-Velarde ◽  
Nathan Larson ◽  
...  

Abstract The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay incomparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainlesssteel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time and temperature, and lysis temperature), which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.


2016 ◽  
Vol 99 (4) ◽  
pp. 980-997 ◽  
Author(s):  
Patrick Bird ◽  
Jonathan Flannery ◽  
Erin Crowley ◽  
James R Agin ◽  
David Goins ◽  
...  

Abstract The 3M™ Molecular Detection Assay (MDA) 2 – Salmonella uses real-time isothermal technology for the rapid and accurate detection of Salmonella spp. from enriched select food, feed, and food-process environmental samples. The 3M MDA 2 – Salmonella was evaluated in a multilaboratory collaborative study using an unpaired study design. The 3M MDA 2 – Salmonella was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for the detection of Salmonella in creamy peanut butter, and to the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.08 reference method “Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Samples” for the detection of Salmonella in raw ground beef (73% lean). Technicians from 16 laboratories located within the continental United States participated. Each matrix was evaluated at three levels of contamination: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2–2 CFU/test portion), and a high inoculum level (2–5 CFU/test portion). Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low inoculum level test portions produced difference in collaborator POD values of 0.03 (95% confidence interval, −0.10 to 0.16) for raw ground beef and 0.06 (95% confidence interval, −0.06 to 0.18) for creamy peanut butter, indicating no statistically significant difference between the candidate and reference methods.


2011 ◽  
Vol 94 (4) ◽  
pp. 1106-1116 ◽  
Author(s):  
Priya Balachandran ◽  
Yanxiang Cao ◽  
Lily Wong ◽  
Manohar R Furtado ◽  
Olga V Petrauskene ◽  
...  

Abstract Real-time PCR methods for detecting foodborne pathogens offer the advantages of simplicity and quick time-to-results compared to traditional culture methods. In this study, the MicroSEQ® real-time PCR system was evaluated for detection of Salmonella spp. in 10 different food matrixes following the AOAC Research Institute's Performance Tested MethodSM validation program. In addition, the performance of the MicroSEQ system was evaluated for the detection of Salmonella in peanut butter as a part of the Emergency Response Validation Program sponsored by the AOAC Research Institute. The system was compared to the ISO 6579 reference method using a paired-study design for detecting Salmonella spp. in raw ground beef, raw chicken, raw shrimp, Brie cheese, shell eggs, cantaloupe, chocolate, black pepper, dry infant formula, and dry pet food. For the peanut butter study, the system was compared to the U.S. Food and Drug Administration's Bacteriological Analytical Manual procedures using an unpaired-study design. No significant difference in performance was observed between the MicroSEQ Salmonella spp. detection system and the corresponding reference methods for all 11 food matrixes. The MicroSEQ system detected all Salmonella strains tested, while showing good discrimination against detection of an exclusivity panel of 30 strains, with high accuracy.


2009 ◽  
Vol 92 (2) ◽  
pp. 449-458 ◽  
Author(s):  
Susan Alles ◽  
Linda X Peng ◽  
Mark A Mozola

Abstract A modification to Performance-Tested MethodSM (PTM) 070601, Reveal® Listeria Test (Reveal), is described. The modified method uses a new media formulation, LESS enrichment broth, in single-step enrichment protocols for both foods and environmental sponge and swab samples. Food samples are enriched for 2730 h at 30C and environmental samples for 2448 h at 30C. Implementation of these abbreviated enrichment procedures allows test results to be obtained on a next-day basis. In testing of 14 food types in internal comparative studies with inoculated samples, there was a statistically significant difference in performance between the Reveal and reference culture U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA/BAM) or U.S. Department of Agriculture-Food Safety and Inspection Service (USDA-FSIS) methods for only a single food in one trial (pasteurized crab meat) at the 27 h enrichment time point, with more positive results obtained with the FDA/BAM reference method. No foods showed statistically significant differences in method performance at the 30 h time point. Independent laboratory testing of 3 foods again produced a statistically significant difference in results for crab meat at the 27 h time point; otherwise results of the Reveal and reference methods were statistically equivalent. Overall, considering both internal and independent laboratory trials, sensitivity of the Reveal method relative to the reference culture procedures in testing of foods was 85.9 at 27 h and 97.1 at 30 h. Results from 5 environmental surfaces inoculated with various strains of Listeria spp. showed that the Reveal method was more productive than the reference USDA-FSIS culture procedure for 3 surfaces (stainless steel, plastic, and cast iron), whereas results were statistically equivalent to the reference method for the other 2 surfaces (ceramic tile and sealed concrete). An independent laboratory trial with ceramic tile inoculated with L. monocytogenes confirmed the effectiveness of the Reveal method at the 24 h time point. Overall, sensitivity of the Reveal method at 24 h relative to that of the USDA-FSIS method was 153. The Reveal method exhibited extremely high specificity, with only a single false-positive result in all trials combined for overall specificity of 99.5.


2017 ◽  
Vol 100 (5) ◽  
pp. 1445-1457
Author(s):  
Amrita Puri ◽  
Adam C Joelsson ◽  
Shawn P Terkhorn ◽  
Ashley S Brown ◽  
Zara E Gaudioso ◽  
...  

Abstract Veriflow®Salmonella species (Veriflow SS) is a molecular-based assay for the presumptive detection of Salmonella spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20%fat ground beef), chicken carcasses, and ready-to-eat (RTE) food (hot dogs). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only an 18 h enrichment for maximumsensitivity. The Veriflow SS systemeliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow SS method to detect low levels of artificially inoculated or naturally occurring Salmonella spp. in eight distinct environmental and food matrixes. Ineach reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow SS method and the U.S. Department of Agriculture Food Safety and Inspection Service MicrobiologyLaboratory Guidebook Chapter 4.06 and the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference methods. A total of 104 Salmonella strains were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow SS method is a sensitive, selective, and robust assay for the presumptive detectionof Salmonella spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and RTE food (hot dogs).


2009 ◽  
Vol 92 (6) ◽  
pp. 1885-1889 ◽  
Author(s):  
Charlotte Lindhardt ◽  
Holger Schönenbrücher ◽  
Jörg Slaghuis ◽  
Andreas Bubert ◽  
Rolf Ossmer ◽  
...  

Abstract Singlepath Salmonella is an immunochromatographic (lateral flow) assay for the presumptive qualitative detection of Salmonella spp. in food. A previous AOAC Performance Tested MethodSM study evaluated Singlepath Salmonella as an effective method for the detection of Salmonella spp. in the following selected foods: dried skimmed milk, black pepper, dried pet food, desiccated coconut, cooked peeled frozen prawns, raw ground beef, and raw ground turkey. In this Emergency Response Validation extension, creamy peanut butter was inoculated with S. enterica. ser. Typhimurium. For low contamination level (1.08 CFU/25 g), a Chi-square value of 0.5 indicated that there was no significant difference between Singlepath Salmonella and the U.S. Food and Drug Administration's Bacteriological Analytical Manual (FDA-BAM) reference method. For high-level and uninoculated control there was 100 agreement between the methods.


Sign in / Sign up

Export Citation Format

Share Document