PSXIV-15 The effects of body condition score on the milk production and energy balance of transition dairy cows

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 472-472
Author(s):  
YangYi Hao

Abstract Our objective was to evaluate the effects of body condition score (BCS) on the milk production and energy balance of transition dairy cows. Seventy-five multiparous dairy cows were separated into four groups according to the BCS, HH (4.25 ± 0.23 and 3.35 ± 0.19 BCS, pre and postpartum, respectively, n = 17), HM (4.14 ± 0.15 and 2.92 ± 0.24, n = 19), MM (3.10 ± 0.21 and 2.78 ± 0.17, n = 23), ML (2.88 ± 0.23 and 2.46 ± 0.19, n = 16). The milk yield, rumen pH, etc., data were collected and analyzed using a one-way ANOVA model in SAS (SAS version 9.4, SAS Institute Inc., Cary, NC, USA). The ML group had a higher milk yield and total solid yield than the MM group (P < 0.05), while the HH and HM groups had no difference with other groups. The HM and ML groups had a higher milk fat content than the MM group (P < 0.05), while the HH group had no difference with other groups. Milk protein content in the HH group was higher than the ML group (P < 0.05). The milk lactose, total solids, urea content in these groups had no difference. The ML group had a higher milk acetone content than the HH group (P < 0.05). The BCS change in the HH and HM groups was higher than the MM and ML groups, and that in the ML group was higher than the MM group (P < 0.05). The rumen pH had no difference within these groups. These findings collectively indicated the prepartum dairy cow with middle BCS would have a more efficient body fat utilization and a better milk production performance. Furthermore, reducing body fat loss is necessary to avoid the negative energy balance.

2017 ◽  
Vol 33 (2) ◽  
pp. 181-191
Author(s):  
Benjamin Cengic ◽  
Nazif Varatanovic ◽  
Tarik Mutevelic ◽  
Amel Cutuk ◽  
Ermin Saljic

Clinical and subclinical disorders and diseases cause reproductive failures and decline in milk production. Etiology of disorders is mainly because of pathological effect of microorganisms, lapses in nutrition and lodging, as well as in management. After partrition, body is under stress and milk yield is highest, which favors appearance of metabolic and infective diseases. Status of puerperium, number of lactation, body condition score and season of parturition, have highest effect to cyclic ovarian activity. Regular development of dominant follicles, ovulation, formation of corpus luteum and luteolysis is necessary for establishment of regular cyclic ovarian activity, which leads to better fertility. Experiment had included 50 cows during first 52 days of lactation. Cows were separated in two main groups, those with normal puerperium - NP (n=32) and abnormal puerperium - AP (n=18). Examinations have been performed during period of 6 to 52 days postpartum. Ovarian dominant follicles have been observed using diagnostic ultrasound linear scanner. The highest number of dominant follicles are present during first two examinations, then their number declines and later in last two examinations rise again. Decrease in number of dominant follicles in both groups is most expressed in period of 14-30 days. During first examination, left ovaries have more dominant follicles, compared with right ovaries, while during later examinations, it is changed in favor of right ovaries. Increased number of vital dominant follicles from period 38-45 days postpartum and absence of abnormal uterine content in lumen in same period postpartum is sign of upcoming fertile estrus.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1674
Author(s):  
Ilona Strączek ◽  
Krzysztof Młynek ◽  
Agata Danielewicz

A significant factor in improving the performance of dairy cows is their physiological ability to correct a negative energy balance (NEB). This study, using Simmental (SIM) and Holstein-Friesian (HF) cows, aimed to assess changes in NEB (non-esterified fatty acid; body condition score; and C16:0, C18:0, and C18:1) and its effect on the metabolic efficiency of the liver (β-hydroxybutyrate and urea). The effects of NEB on daily yield, production at peak lactation and its duration, and changes in selected milk components were assessed during complete lactation. Up to peak lactation, the loss of the body condition score was similar in both breeds. Subsequently, SIM cows more efficiently restored their BCS. HF cows reached peak lactation faster and with a higher milk yield, but they were less able to correct NEB. During lactation, their non-esterified fatty acid, β-hydroxybutyrate, C16:0, C18:0, C18:1, and urea levels were persistently higher, which may indicate less efficient liver function during NEB. The dynamics of NEB were linked to levels of leptin, which has anorectic effects. Its content was usually higher in HF cows and during intensive lactogenesis. An effective response to NEB may be exploited to improve the production and nutritional properties of milk. In the long term, it may extend dairy cows’ productive life and increase lifetime yield.


2003 ◽  
Vol 86 (6) ◽  
pp. 2193-2204 ◽  
Author(s):  
D.P. Berry ◽  
F. Buckley ◽  
P. Dillon ◽  
R.D. Evans ◽  
M. Rath ◽  
...  

2005 ◽  
Vol 2005 ◽  
pp. 19-19
Author(s):  
T. Yan ◽  
R. E. Agnew ◽  
C. S. Mayne

Body condition of lactating dairy cows varies at different stages of lactation. Cows usually mobilise their body reserves to provide energy and protein for milk production in early lactation, and gain weight to deposit energy and protein for pregnancy at a later stage. The objective of the present study was to examine relationships between body condition score (CS) and body concentration of lipid, CP and energy.


2002 ◽  
Vol 2002 ◽  
pp. 87-87 ◽  
Author(s):  
A.R.G. Wylie ◽  
D.J. Devlin ◽  
A.J. Bjourson

A review of published leptin data for growing lambs, older ewes and mature dairy cows in late lactation showed that only 0.30-0.37 of the variation in blood leptin concentration was explained by differences in body fat variably expressed as % of liveweight (LW), backfat thickness and body condition score (BCS) respectively (Wylieet al., 2002). In dairy cows between 15d and 226d postpartum, Wylieet al(2002) observed no overall correlation between leptin at slaughter and lipid expressed as % of LW, empty body weight or carcase weight and only a weak correlation in cows in mid-lactation. Losses of fat during early lactation may ‘uncouple’ the link between leptin and fat and produce a bias across all of lactation. Another explanation is that leptin may be more closely linked with lipogenesis than with the amount of stored fat. This study revisits some metabolite and hormone data from a previous investigation of IGF-1 changes in fed, fasted and re-fed sheep in the light of more recently obtained leptin concentrations in the same animals.


2003 ◽  
Vol 27 ◽  
pp. 647-649 ◽  
Author(s):  
A. Formigoni ◽  
P. Pezzi ◽  
A. Gramenzi ◽  
G. Martino ◽  
E. Neri

Sign in / Sign up

Export Citation Format

Share Document