scholarly journals The Analysis of Aerosolized Methamphetamine From E-cigarettes Using High Resolution Mass Spectrometry and Gas Chromatography Mass Spectrometry

2019 ◽  
Vol 43 (8) ◽  
pp. 592-599 ◽  
Author(s):  
Rose I Krakowiak ◽  
Justin L Poklis ◽  
Michelle R Peace

Abstract The use of electronic cigarettes (e-cigs) has expanded from a nicotine delivery system to a general drug delivery system. The internet is rife with websites, blogs and forums informing users how to modify e-cigs to deliver illicit drugs while maintaining optimal drug delivery of their device. The goal of this study was to qualitatively identify the presence of methamphetamine in the aerosol produced by an e-cig and to quantitatively assess the effect voltage on the concentration of aerosolized methamphetamine. A KangerTech AeroTank electronic cigarette containing a 30, 60 or 120 mg/mL of methamphetamine in 50:50 propylene glycol: vegetable glycerin formulation was used to produce the aerosol. To qualitatively identify aerosolized methamphetamine, the aerosol was generated at 4.3 V, trapped in a simple glass trapping system, extracted using solid-phase microextraction (SPME), and analyzed by high-resolution Direct Analysis in Real Time AccuTOF™ Mass Spectrometry (DART-MS). To assess the effect of voltage on the concentration of aerosolized methamphetamine, the aerosol was generated at 3.9, 4.3 and 4.7 V, trapped and quantified using gas chromatography mass spectrometry (GC/MS). SPME-DART-MS and SPME-GC-MS demonstrated the aerosolization of methamphetamine. The concentration of aerosolized methamphetamine at 3.9, 4.3 and 4.7 V was not statistically different at 800 ± 600 ng/mL, 800 ± 600 ng/mL and 1,000 ± 800 ng/mL, respectively. The characterization of the vapors produced from e-liquids containing methamphetamine provides an understanding of the dose delivery dynamics of e-cigarettes.

Sign in / Sign up

Export Citation Format

Share Document