P219L substitution in human D-amino acid oxidase impacts the ligand binding and catalytic efficiency

2020 ◽  
Vol 168 (5) ◽  
pp. 557-567
Author(s):  
Wanitcha Rachadech ◽  
Yusuke Kato ◽  
Rabab M Abou El-Magd ◽  
Yuji Shishido ◽  
Soo Hyeon Kim ◽  
...  

Abstract Human D-amino acid oxidase (DAO) is a flavoenzyme that is implicated in neurodegenerative diseases. We investigated the impact of replacement of proline with leucine at Position 219 (P219L) in the active site lid of human DAO on the structural and enzymatic properties, because porcine DAO contains leucine at the corresponding position. The turnover numbers (kcat) of P219L were unchanged, but its Km values decreased compared with wild-type, leading to an increase in the catalytic efficiency (kcat/Km). Moreover, benzoate inhibits P219L with lower Ki value (0.7–0.9 µM) compared with wild-type (1.2–2.0 µM). Crystal structure of P219L in complex with flavin adenine dinucleotide (FAD) and benzoate at 2.25 Å resolution displayed conformational changes of the active site and lid. The distances between the H-bond-forming atoms of arginine 283 and benzoate and the relative position between the aromatic rings of tyrosine 224 and benzoate were changed in the P219L complex. Taken together, the P219L substitution leads to an increase in the catalytic efficiency and binding affinity for substrates/inhibitors due to these structural changes. Furthermore, an acetic acid was located near the adenine ring of FAD in the P219L complex. This study provides new insights into the structure–function relationship of human DAO.

2019 ◽  
Vol 20 (18) ◽  
pp. 4412
Author(s):  
Denis L. Atroshenko ◽  
Mikhail D. Shelomov ◽  
Sophia A. Zarubina ◽  
Nikita Y. Negru ◽  
Igor V. Golubev ◽  
...  

d-amino acid oxidase (DAAO, EC 1.4.3.3) is used in many biotechnological processes. The main industrial application of DAAO is biocatalytic production of 7-aminocephalosporanic acid from cephalosporin C with a two enzymes system. DAAO from the yeast Trigonopsis variabilis (TvDAAO) shows the best catalytic parameters with cephalosporin C among all known DAAOs. We prepared and characterized multipoint TvDAAO mutants to improve their activity towards cephalosporin C and increase stability. All TvDAAO mutants showed better properties in comparison with the wild-type enzyme. The best mutant was TvDAAO with amino acid changes E32R/F33D/F54S/C108F/M156L/C298N. Compared to wild-type TvDAAO, the mutant enzyme exhibits a 4 times higher catalytic constant for cephalosporin C oxidation and 8- and 20-fold better stability against hydrogen peroxide inactivation and thermal denaturation, respectively. This makes this mutant promising for use in biotechnology. The paper also presents the comparison of TvDAAO catalytic properties with cephalosporin C reported by others.


2006 ◽  
Vol 139 (5) ◽  
pp. 873-879 ◽  
Author(s):  
Chiaki Setoyama ◽  
Yasuzo Nishina ◽  
Hisashi Mizutani ◽  
Ikuko Miyahara ◽  
Ken Hirotsu ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 290
Author(s):  
Bence Szilágyi ◽  
Csilla Hargitai ◽  
Ádám A. Kelemen ◽  
Anita Rácz ◽  
György G. Ferenczy ◽  
...  

Most of the known inhibitors of D-amino acid oxidase (DAAO) are small polar molecules recognized by the active site of the enzyme. More recently a new class of DAAO inhibitors has been disclosed that interacts with loop 218−224 at the top of the binding pocket. These compounds have a significantly larger size and more beneficial physicochemical properties than most reported DAAO inhibitors, however, their structure-activity relationship is poorly explored. Here we report the synthesis and evaluation of this type of DAAO inhibitors that open the lid over the active site of DAAO. In order to collect relevant SAR data we varied two distinct parts of the inhibitors. A systematic variation of the pendant aromatic substituents according to the Topliss scheme resulted in DAAO inhibitors with low nanomolar activity. The activity showed low sensitivity to the substituents investigated. The variation of the linker connecting the pendant aromatic moiety and the acidic headgroup revealed that the interactions of the linker with the enzyme were crucial for achieving significant inhibitory activity. Structures and activities were analyzed based on available X-ray structures of the complexes. Our findings might support the design of drug-like DAAO inhibitors with advantageous physicochemical properties and ADME profile.


1970 ◽  
Vol 116 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. M. Jordan ◽  
M. Akhtar

1. The preparation of stereospecifically tritiated glycines and the determination of their absolute configurations by the use of d-amino acid oxidase are described. 2. The reaction catalysed by serine transhydroxymethylase, which results in the conversion of glycine into serine, has been separated into at least four partial reactions. It is suggested that the first event in this conversion is the formation of a Schiff base intermediate of glycine and pyridoxal phosphate. The next important step involves the removal of the 2S-hydrogen atom of glycine to give a carbanion intermediate. Experiments pertinent to the mechanism of conversion of this carbanion intermediate into serine are described. 3. The enzyme preparation catalysing the conversion of glycine into serine also participates in the conversion of glycine into threonine and allothreonine. In both these conversions, glycine → serine and glycine → threonine, the 2S-hydrogen atom of glycine is eliminated and the 2R-hydrogen atom of glycine is retained. 4. In the light of these experiments the mechanism of action of serine transhydroxymethylase is discussed. It is suggested that methylenetetrahydrofolate is the carrier of formaldehyde, from which formaldehyde may be liberated at the active site of the enzyme, thus allowing the overall reaction to take place.


Genetics ◽  
1983 ◽  
Vol 103 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Ryuichi Konno ◽  
Yosihiro Yasumura

ABSTRACT d-Amino acid oxidase activity in the kidney homogenates of mice of seven strains was measured to search for a mutant for this enzyme. There was a consistent sex difference in the enzyme activity in these strains: male mice showed higher levels of the enzyme activity than females. In contrast to other strains, some mice of the ddY strain did not possess enzyme activity. This trait was inheritable, and a mouse stock without enzyme activity (DAO-) was established. The allele (Dao-1c) carried by the DAO- mice was recessive and behaved as a single autosomal gene in inheritance. Heterozygous mice for this gene (Dao-1  +/Dao-1c) showed nearly half the enzyme activity of the wild-type homozygotes (Dao-1  +/Dao-1  +), suggesting that Dao-1c is a null allele and that there is a gene dosage effect on the enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document