Airbag Burns: An Unfortunate Consequence of Motor Vehicle Safety

Author(s):  
Kathryn E H Skibba ◽  
Chelsea N Cleveland ◽  
Derek E Bell

Abstract Thousands of people are injured in motor vehicle collisions daily and the mandated installation of airbags protects passengers but can also cause injuries from deployment including cutaneous burns. We sought to characterize the patterns and outcomes of burns resulting from airbag deployment by performing a retrospective review of all patients evaluated by the burn service from May 1, 2015 to April 30, 2019. Inclusion criteria were patients of all ages with burn injuries related to airbag deployment. Demographic data, burn characteristics, and outcomes were reviewed. Seventeen patients met the inclusion criteria: 82.4% female and 17.6% male. The average age was 40.4 years. Fifteen patients had second-degree and two had third-degree burns. The average TBSA was 0.45%. The hands or upper extremity (88%) were most often injured, but there were two chest, one neck, and one anterior thigh burns. Eight patients suffered multiple burns. Burn etiology (chemical vs thermal) was often not specified. No patients required hospitalization or surgical intervention, and all wounds healed with wound care. The average time to re-epithelialization was 11 days. Although airbags prevent mortality and serious injury, the exothermic chemical reaction that inflates the airbag is responsible for deployment-related burns. Since there is a chemical and thermal component, all airbag-related burns should undergo chemical decontamination on the initial presentation. Burns related to airbag deployment tend to be small and do not require grafting; however, patients suffer from associated pain, scarring, and burn management can be a financial and time burden to the patient.

2020 ◽  
Vol 41 (Supplement_1) ◽  
pp. S250-S251
Author(s):  
Kathryn Skibba ◽  
Chelsea Cleveland ◽  
Derek Bell

Abstract Introduction Over 7,500 Americans are injured by motor vehicle crashes every day and air bags save an estimated 2,790 lives per year.6,7 All vehicles are mandated to have airbags installed. The ubiquity of airbags has shown a surge in airbag related injuries including abrasions, contusions, lacerations, burns, fractures, and retinal detachment.1,3 Methods A retrospective review of all patients evaluated by the burn service was performed from 5/1/2015-4/30/2019. Inclusion criteria was patients of all ages with burn injuries resulting from airbag deployment. Demographic data and burn characteristics were reviewed. Results A total of seventeen patients met inclusion criteria: 82.4% female, 17.6% male. The average age was 40.4 years. No patients required hospitalization for their burn care. Etiology of the burn was often not clinically distinguishable; six patients were categorized as chemical burns and three from thermal injury. The remaining eight patients had unspecified etiology. Fifteen patients had second degree and two had third degree burns. The average TBSA for all patients was 0.45%. Burn location: ten hand or wrist; six arm, two chest, one neck, and anterior thigh burn. Eight patients suffered burns to more than one site. All patients were able to heal from their burns with wound care; no patients required surgical intervention. The average time to re-epithelialization was 11 days. Conclusions There is no question about the efficacy of airbags in preventing death and serious injury. However, the current mechanism of airbag deployment is intrinsically hazardous to passengers as it releases hot gases and alkaline substance into the cabin. The clinical manifestation of the burn may not distinguish whether it was a chemical or thermal etiology, as seen in 47% of our patients. If there is a suspicion for burn resulting from an airbag, the wound should be copiously irrigated and treated as though there is alkali chemical contamination. The average wound size was small at 0.45% TBSA. Most wounds were determined to be second degree and all were able to heal without surgical intervention. The most common area burned was the hands or upper extremity (88%). Airbag related burns should not be minimized as they cause pain, scarring, and a financial and time burden to the patient. Applicability of Research to Practice It is important to recognize and properly treat burns related to airbag deployment. If etiology of the burn is in question, the wound should be irrigated copiously as it may be caused by chemical contamination.


2021 ◽  
pp. 194338752199173
Author(s):  
Kevin Hong ◽  
James Jeong ◽  
Yehudah N. Susson ◽  
Shelly Abramowicz

Objective: The aim of this study was to assess patterns of maxillofacial trauma in the pediatric population in Atlanta. This information is important to help guide management and allocate resources for treatment of maxillofacial injuries at Children’s Healthcare of Atlanta (CHOA). Methods: This study was a retrospective chart review of children who presented from 2006 to 2015. Inclusion criteria were: (1) age 18 years old or younger, (2) presentation to emergency department, (3) diagnosis of maxillofacial fractures, and (4) evaluation by Oral and Maxillofacial Surgery, Otolaryngology, or Plastic Surgery services. Medical records were reviewed to record demographic, mechanism of injury, fracture location, and yearly incidence of injury. Descriptive statistics were computed to summarize findings and overall trends. Results: During the study period, 39,833 patients were identified. Of them, 1995 met the inclusion criteria. The majority were male (n = 1359, 68%) with an average age of 9.4 years old (range of 1 month to 18 years old). Mechanisms of injury were motor vehicle collisions (MVC) (n = 597, 29.9%), fall (n = 565, 28.3%), sports injury (n = 317, 15.9%), pedestrian struck (n = 215, 10.8%), assault/abuse (n = 204, 10.2%), other (n = 81, 4.1%), or gunshot wound (n = 16, 0.8%). Fracture sites were mandible (n = 519, 26%), complex (n = 479, 24%), nasal (n = 419, 21%), dentoalveolar (n = 279, 14%), orbital (n = 259, 13%), and maxilla (n = 40, 2%). Males had a higher incidence of assault than females (n = 185, 91% of assaults). The incidence of maxillofacial trauma increased with age with a peak incidence in 13 to 16-year-olds (n = 566, 28.3%). During the years examined, there was an upward trend in MVCs as the etiology with a peak incidence of facial fractures due to MVCs occurring in 2015. All other mechanisms remained constant during this time period. Conclusions: There was an increase in pediatric facial fractures secondary to motor vehicle collisions from 2007 to 2015 despite improvements in regulations, traffic safety, and technology.


Author(s):  
Russell Frieder ◽  
Sri Kumar

Motor vehicle collisions frequently result in serious or fatal inuries to occupants [1–4]. Frontal collisions are amongst the most severe types of accidents. The use of safety systems such as seat belts and airbags has been shown to reduce the severity of injuries sustained by occupants [5–10]. It is well known that frontal airbags act as supplemental restraints to seat belts in protecting occupants. Airbag deployment occurs through a reaction of chemicals in the inflator that rapidly produces gas and fills the canvas bag. The filled bag acts a cushion between the occupant and the vehicle’s interior components. The supplemental restraint provided by the airbag increases the amount of time and distance over which the occupant’s body decelerates, and accordingly reduces the potential for injury. The time at which the airbag deployment is initiated during the crash sequence can have an effect on the nature of the contact between occupant and airbag. Though properly timed, frontal airbags have been shown to reduce injuries sustained to occupants[11], it has been reported that airbags that deploy too late may cause injury[12]. To date, there have been a very limited number of studies that have addressed the biomechanical effects of late airbag deployment. The purpose of this study is to determine the biomechanical effects of late airbag deployment and restraint use on various sizes of occupants through computer simulation.


2021 ◽  
Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason Smith ◽  
...  

Abstract BackgroundMotor vehicle collisions are a common cause of death and serious injury. Many casualties will remain in their vehicle following a collision. Trapped patients have more injuries and are more likely to die than their untrapped counterparts. Current extrication methods are time consuming and have a focus on movement minimisation and mitigation. The optimal extrication strategy and the effect this extrication method has on spinal movement is unknown. The aim of this study was to evaluate the movement at the cervical and lumbar spine for four commonly utilised extrication techniques. MethodsBiomechanical data was collected using inertial Measurement Units on 6 healthy volunteers. The extrication types examined were: roof removal, b-post rip, rapid removal and self-extrication. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement (travel), maximal movement, mean, standard deviation and confidence intervals are reported for each extrication type.ResultsData from a total of 230 extrications were collected for analysis. The smallest maximal and total movement (travel) were seen when the volunteer self-extricated (AP max = 2.6mm, travel 4.9mm). The largest maximal movement and travel were seen in rapid extrication extricated (AP max = 6.21mm, travel 20.51 mm). The differences between self-extrication and all other methods were significant (p<0.001), small non-significant differences existed between roof removal, b-post rip and rapid removal.Self-extrication was significantly quicker than the other extrication methods (mean 6.4s).ConclusionsIn healthy volunteers, self-extrication is associated with the smallest spinal movement and the fastest time to complete extrication. Rapid, B-post rip and roof off extrication types are all associated with similar movements and time to extrication in prepared vehicles.


Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason E. Smith ◽  
...  

Abstract Background Motor vehicle collisions are a common cause of death and serious injury. Many casualties will remain in their vehicle following a collision. Trapped patients have more injuries and are more likely to die than their untrapped counterparts. Current extrication methods are time consuming and have a focus on movement minimisation and mitigation. The optimal extrication strategy and the effect this extrication method has on spinal movement is unknown. The aim of this study was to evaluate the movement at the cervical and lumbar spine for four commonly utilised extrication techniques. Methods Biomechanical data was collected using inertial Measurement Units on 6 healthy volunteers. The extrication types examined were: roof removal, b-post rip, rapid removal and self-extrication. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement (travel), maximal movement, mean, standard deviation and confidence intervals are reported for each extrication type. Results Data from a total of 230 extrications were collected for analysis. The smallest maximal and total movement (travel) were seen when the volunteer self-extricated (AP max = 2.6 mm, travel 4.9 mm). The largest maximal movement and travel were seen in rapid extrication extricated (AP max = 6.21 mm, travel 20.51 mm). The differences between self-extrication and all other methods were significant (p < 0.001), small non-significant differences existed between roof removal, b-post rip and rapid removal. Self-extrication was significantly quicker than the other extrication methods (mean 6.4 s). Conclusions In healthy volunteers, self-extrication is associated with the smallest spinal movement and the fastest time to complete extrication. Rapid, B-post rip and roof off extrication types are all associated with similar movements and time to extrication in prepared vehicles.


2007 ◽  
Vol 12 (3) ◽  
pp. 4-7
Author(s):  
Charles N. Brooks ◽  
Christopher R. Brigham

Abstract Multiple factors determine the likelihood, type, and severity of bodily injury following a motor vehicle collision and, in turn, influence the need for treatment, extent of disability, and likelihood of permanent impairment. Among the most important factors is the change in velocity due to an impact (Δv). Other factors include the individual's strength and elasticity, body position at the time of impact, awareness of the impending impact (ie, opportunity to brace, guard, or contract muscles before an impact), and effects of braking. Because Δv is the area under the acceleration vs time curve, it combines force and duration and is a useful way to quantify impact severity. The article includes a table showing the results of a literature review that concluded, “the consensus of human subject research conducted to date is that a single exposure to a rear-end impact with a Δv of 5 mph or less is unlikely to result in injury” in most healthy, restrained occupants. Because velocity incorporates direction as well as speed, a vehicular occupant is less likely to be injured in a rear impact than when struck from the side. Evaluators must consider multiple factors, including the occupant's pre-existing physical and psychosocial status, the mechanism and magnitude of the collision, and a variety of biomechanical variables. Recommendations based solely on patient history and physical findings (and, perhaps, imaging studies) may be ill-informed.


2007 ◽  
Vol 177 (4S) ◽  
pp. 37-37
Author(s):  
James K. Kuan ◽  
Robert Kaufman ◽  
Jonathan L. Wright ◽  
Charles Mock ◽  
Avery B. Nathens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document