Transmission of Impatiens Necrotic Spot Virus in Peppermint by Western Flower Thrips (Thysanoptera: Thripidae)

1994 ◽  
Vol 87 (1) ◽  
pp. 197-201 ◽  
Author(s):  
J. D. Deangelis ◽  
D. M. Sether ◽  
P. A. Rossignol
2005 ◽  
Vol 6 (1) ◽  
pp. 28 ◽  
Author(s):  
Rayapati A. Naidu ◽  
Carl M. Deom ◽  
John L. Sherwood

This study reports the occurrence of Impatiens necrotic spot virus (INSV) on pepper under greenhouse conditions. In recent years, INSV has been detected in crops like peanut, tobacco, and potato as well as several weed species. Because INSV is vectored by western flower thrips and tobacco thrips, its expanding host range could make it an economically important problem in agricultural and horticultural crops in the U.S. Accepted for publication 11 July 2005. Published 27 July 2005.


Plant Disease ◽  
2010 ◽  
Vol 94 (12) ◽  
pp. 1507-1507 ◽  
Author(s):  
J. M. Crosslin ◽  
L. L. Hamlin

In April and May 2010, leaves on approximately one-half of 200 potato (Solanum tuberosum L. cv. Atlantic) plants, 20 to 25 cm high, grown from prenuclear minitubers in greenhouses located at the USDA-ARS facility in Prosser, WA exhibited necrotic spots similar to those produced by the early blight pathogen, Alternaria solani. Fungicide sprays did not reduce incidence of the symptoms. Observations associated the symptoms with thrips feeding damage so plants were tested for Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) with ImmunoStrips from Agdia, Inc (Elkhart, IN). Three of three, two of two, and two of two symptomatic plants from three greenhouses were positive for INSV and negative for TSWV. Two symptomless plants tested negative. Four of four symptomatic and zero of two symptomless plants were positive by reverse transcription (RT)-PCR with INSV specific primers (forward: 5′ TAACACAACACAAAGCAAACC 3′ and reverse: 5′ CCAAATACTACTTTAACCGCA 3′) (4). The 906-bp amplicon from one sample was cloned and three clones were sequenced. The three clones were 99.7% identical, and BLAST analysis of the consensus sequence (GenBank Accession No. HM802206) showed 99% identity to INSV accessions D00914 and X66972, and 98% identity to other INSV isolates. The isolate, designated INSV pot 1, was mechanically inoculated to one plant of potato cv. GemStar and produced local, spreading necrotic lesions. The virus did not go systemic, as determined by RT-PCR of upper leaves 30 days after inoculation. The local necrotic lesions on GemStar were positive for INSV by ImmunoStrips and RT-PCR. The original source of the INSV inoculum is unknown. However, hairy nightshade (Solanum sarrachoides Sendtn.) and plantain (Plantago major L.) weeds in an ornamental planting near one of the affected greenhouses tested positive for INSV by ImmunoStrips. The nightshade showed obvious thrips feeding damage but no obvious virus symptoms while the plantain showed less thrips feeding damage but distinct necrotic rings. Subsequently, two of two symptomatic potato plants of cv. Desiree in another greenhouse near the initial site tested INSV positive with the ImmunoStrips. In addition to the necrotic lesions on leaves observed in cv. Atlantic, these plants also showed necrosis of petioles and stems. INSV is transmitted by a number of species of thrips, but the western flower thrips (Frankliniella occidentalis Perg.) is considered the most important under greenhouse conditions. The species of thrips in the affected greenhouses was not determined before all materials were discarded. Both INSV and the thrips vector have large host ranges including many crops and weeds, and have become increasingly important in recent years (1,2). INSV was reported on greenhouse-grown potatoes in New York in 2005 (3). These findings indicate INSV can be a major problem in greenhouse potatoes, whether for research purposes or production of virus-free minitubers destined for field plantings. References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) R. A. Naidu et al. Online publication. doi:10.1094/PHP-2005-0727-01-HN, Plant Health Progress, 2005. (3) K. L. Perry et al. Plant Dis. 89:340, 2005. (4) K. Tanina et al. Jpn. J. Phytopathol. 67:42, 2001. ERRATUM: A correction was made to this Disease Note on September 7, 2012. The forward and reverse INSV specific primer sequences were corrected.


Plant Disease ◽  
2001 ◽  
Vol 85 (11) ◽  
pp. 1211-1211 ◽  
Author(s):  
R. A. Naidu ◽  
C. M. Deom ◽  
J. L. Sherwood

Of more than a dozen members of the genus Tospovirus, Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus (INSV) are among the most damaging viruses found in North America (3). TSWV is a major problem in vegetable and field crops, whereas INSV is commonly encountered in the floriculture and nursery industries. TSWV is transmitted by several thrips species, of which the western flower thrips (WFT, Frankliniella occidentalis Pergande) is the most predominant vector. INSV has been reported to be transmitted only by WFT (1). To determine if tobacco thrips (TT, F. fusca Hinds) can transmit INSV, a virus-free culture of TT was reared on detached peanut cv. Florunner leaves in 0.5-liter polypropylene cups with closed lids at 25 ± 2°C with constant light. Fresh peanut leaves were exchanged every 2 to 3 days to maintain the thrips colony. For transmission studies, adult thrips were confined on peanut leaves for 24 h for oviposition and then the peanut leaves, sans adults thrips, were transferred to a new cup. Leaves were examined daily for larval emergence, and similarly aged first instar larvae (<12 h old) were given an acquisition access period of 24 to 48 h on INSV-infected detached leaves of Emilia sonchifolia. The larvae were subsequently transferred to healthy peanut leaves and reared until adult emergence. Groups of 10 adults per plant were given a 48-h inoculation access period on 10-day-old healthy E. sonchifolia seedlings. Thrips were subsequently killed, and the plants were maintained in a growth chamber at 28 ± 2°C, and with a 16/8 light/dark photoperiod. Transmission studies were repeated 10 times with different sources of infected plants and different batches of larvae following acquisition access periods. Seven to ten days after inoculation, plants developed symptoms consisting of chlorotic spots, mosaic, and mottling. The presence of INSV in these symptomatic plants was confirmed by ELISA using INSV ImmunoStrip Test (Agdia, Inc., Elkhart, IN) and by reverse transcription-polymerase chain reaction assay with primers specific to the INSV-NSs gene. Our results demonstrate that TT can serve as a vector of INSV. INSV has been reported in peanut in the southeastern United States (2). WFT and TT transmit TSWV in peanuts, with the latter being the predominant vector species in Georgia and other parts of the region. TT transmission of INSV is of concern because of the increased incidence in recent years of INSV in peanuts and the potential for synergistic or gene exchange between TSWV and INSV, since mixed infections with both viruses have been observed (4). References: (1) M. L. Daughtrey et al. Plant Dis. 81:1220, 1997. (2) S. S. Pappu et al. Plant Dis. 83:966, 1999. (3). J. L. Sherwood et al. Pages 1034–1040 in: Encyclopedia of Plant Pathology. C. Maloy and T. D. Murray, eds. John Wiley and Sons, Inc., New York, 2001. (4) L. Wells et al. Phytopathology (Abstr.) 94:S94, 2001.


Plant Disease ◽  
1997 ◽  
Vol 81 (11) ◽  
pp. 1334-1334 ◽  
Author(s):  
R. J. McGovern ◽  
J. E. Polston ◽  
B. K. Harbaugh

In May 1997, inclusions typical of a tospovirus were visualized by light microscopy in leaf tissue of lisianthus (Eustoma grandiflorum) exhibiting stunting, necrotic ringspots, leaf distortion, and systemic necrosis. Wilting and plant death were the final symptoms observed. Affected plants occurred at low incidence (<0.1%) in greenhouse-grown lisianthus in Manatee County, FL. Symptomatic tissue tested positive for impatiens necrotic spot virus (INSV) and negative for tomato spotted wilt virus (TSWV) with enzyme-linked immunosorbent assay (ELISA; Agdia, Elkhart, IN). Mechanical transmission of the virus to lisianthus and tomato was attempted by triturating 1 g of symptomatic leaf tissue in 7 ml of a buffer consisting of 0.01 M Tris and 0.01 M sodium sulfite, pH 7.3. Six plants of lisianthus cv. Maurine Blue and three of tomato (Lycopersicon esculentum) cv. Lanai at the second true-leaf stage were inoculated following abrasion of leaves with Carborundum. An equal number of controls were inoculated with buffer alone. Plants were maintained in a controlled environment chamber with a 12-h photoperiod, day/night temperatures of 21/16°C, and light intensity of 120 μE · s-l · m-2. Transmission rates were 100 and 0% to lisianthus and tomato, respectively. Chlorotic local lesions followed by chlorotic ringspots were observed in inoculated lisianthus leaves 4 days after inoculation. Stunting, leaf distortion, and necrotic ringspots appeared in noninoculated leaves of lisianthus plants within 3 to 4 weeks after inoculation. Buffer-inoculated lisianthus and all tomato plants remained symptomless and tested negative for INSV by ELISA. All symptomatic lisianthus tested positive for INSV by ELISA. The symptoms we observed in lisianthus due to infection by INSV were more severe than those previously reported in this host (1,2). The occurrence of such strains of INSV at high incidences could pose a significant threat for commercial lisianthus production. References: (1) M. K. Hausbeck et al. Plant Dis. 76:795, 1992. (2) H. T. Hsu and R. H. Lawson. Plant Dis. 75:292,1991.


Plant Disease ◽  
2004 ◽  
Vol 88 (7) ◽  
pp. 771-771 ◽  
Author(s):  
N. Martínez-Ochoa ◽  
S. W. Mullis ◽  
A. S. Csinos ◽  
T. M. Webster

Impatiens necrotic spot virus (INSV), family Bunyaviridae, genus Tospovirus, is an emerging virus found mostly in ornamentals under greenhouse production. INSV has been detected in peanut (Arachis hypogaea L.) in Georgia and Texas (3) and recently in tobacco (Nicotiana tabacum L.) in the southeastern United States (2) but little is known about INSV distribution and impact on these crops. Noncrop plant hosts are likely to contribute to disease spread by serving as reservoirs for the virus and reproductive hosts for thrips (Frankliniella occidentalis Pergande), which transmit the virus. Yellow nutsedge, a native of North America, and purple nutsedge introduced from Eurasia, are considered serious weed problems in the southeastern United States. To date, there are no reports of natural INSV infections in these weeds. A survey was conducted at two research farms in Tift County, Georgia to determine if yellow and purple nutsedge plants were naturally infected with Tomato spotted wilt virus (TSWV) and INSV. The first field at the Black Shank Farm had been planted with flue-cured tobacco K-326 earlier in the year and fallow at the time of sampling. The second field at the Ponder Farm was planted at the time of sampling with yellow squash (Cucurbita pepo L.) and cabbage (Brassica oleracea L.). In early October 2002, 90 nutsedge plants were taken at random from each site. Leaf and root tissues of each of the nutsedge plants were tested for TSWV and INSV using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) alkaline phosphatase antisera kits (Agdia Inc., Elkhart, IN). No visible symptoms of INSV or TSWV were observed. Samples from the field at the Black Shank Farm resulted in 2 of 26 positive for INSV in purple nutsedge plants and 6 of 64 in yellow nutsedge plants. At the Ponder Farm, 3 of 12 were positive for INSV in purple nutsedge plants and 14 of 78 in yellow nutsedge plants. None of the samples in either site tested positive for TSWV. The DAS-ELISA positive samples were verified for INSV using reverse transcription-polymerase chain reaction (RT-PCR) as previously described by Dewey et al. (1). Total RNA extracts were obtained from the DAS-ELISA positive nutsedge samples using RNeasy extraction kits (Qiagen Inc., Valencia, CA). The RT-PCR was carried out with primer 1F: 5′-TCAAG(C/T) CTTC(G/T)GAA(A/G)GTGAT 3′ (1) and primer 2R: 5′-ATGAACAAAGCAAAGATTACC 3′ specific to the 3′ end of the INSV N gene open reading frame (GenBank Accession No. NC003624). DAS-ELISA negative tissues of Cyperus esculentus L. and Emilia sonchifolia (L.) DC and an E. sonchifolia DAS-ELISA positive for INSV were included in the reactions as controls. All of the DAS-ELISA positive nutsedge samples yielded an amplification product with the expected size of 298 bp when PCR products were resolved by agarose (0.7%) gel electrophoresis. The relatively high occurrence of INSV found in the sampled fields may explain the recent increase in incidence of INSV in susceptible field crops. Although yellow nutsedge is more common than purple nutsedge in North America, the potential for dispersal of INSV in both species could be significant because of the nature of nutsedge tuber survival and spreading capabilities. References: (1) R. A. Dewey et al. J. Virol. Methods 56:19, 1996. (2) N. Martínez-Ochoa et al. On-line publication. doi:10.1094/PHP-2003-0417-01-HN. Plant Health Progress, 2003. (3) S. S. Pappu et al. Plant Dis. 83:966,1999.


2013 ◽  
pp. 319-325 ◽  
Author(s):  
S. Lazzereschi ◽  
B. Nesi ◽  
S. Pecchioli ◽  
A. Grassotti ◽  
D. Rizzo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document