scholarly journals Study on the Genetic Differentiation of Geographic Populations of Calliptamus italicus (Orthoptera: Acrididae) in Sino-Kazakh Border Areas Based on Mitochondrial COI and COII Genes

2019 ◽  
Vol 112 (4) ◽  
pp. 1912-1919 ◽  
Author(s):  
Ye Xu ◽  
Ji-wei Mai ◽  
Bing-jie Yu ◽  
Hong-xia Hu ◽  
Liang Yuan ◽  
...  

Abstract Calliptamus italicus L. is an important pest on the desert and semidesert steppes along the Sino-Kazakh border. To elucidate the molecular mechanism of its continuous outbreaks, we studied 11 different geographic populations of C. italicus to determine: 1) the complete sequences of the entire mitochondrial cytochrome oxidase subunit I (COI) and mitochondrial cytochrome oxidase subunit II (COII) genes, and 2) performed genetic diversity, differentiation, gene flow, and molecular variation analyses. Of the 11 populations, the Yining County (YNX) population had the highest haplotype diversity and Pi values. There are significant differences in Tajima’s D and Fu’s Fs (P < 0.05). The fixation index Fst values of the total C. italicus population were 0.03352, and its gene flow Nm values of the total C. italicus population were 15.32. Taken together, there were five main findings: 1) the current genetic differentiation of C. italicus arose within populations; 2) genetic exchange levels were high between geographical populations; 3) genetic variation level was low; 4) C. italicus populations likely expanded in recently, and 5) there was no significant correlation between genetic distance and geographic distance for any geographic population. Findings from this study indicate that frequent gene exchange between populations may enhance the adaptability of C. italicus along the Sino-Kazakh border, leading to frequent outbreaks.

2019 ◽  
Vol 12 (6) ◽  
pp. 896-900 ◽  
Author(s):  
Rini Widayanti ◽  
Aris Haryanto ◽  
Wayan Tunas Artama ◽  
Suhendra Pakpahan

Aim: This study aimed to analyze the genetic variation and phylogenetic reconstruction of Indonesian indigenous catfish using mitochondrial cytochrome oxidase subunit III sequences. Materials and Methods: A total of 19 samples of catfish were collected from seven rivers (Elo [EM], Progo [PM], Kampar [KR], Musi [MP], Mahakam [MS], Kapuas [KS], and Bengawan Solo [BSBJ]) in five different geographical locations in Indonesia. The genome was isolated from the tissue. Mitochondrial DNA cytochrome oxidase subunit III was amplified using polymerase chain reaction (PCR) with CO3F and CO3R primers. The PCR products were sequenced and continued to analyze genetic variation and phylogenetic relationship using MEGA version 7.0 software. Results: Cytochrome c oxidase (COX)-III gene sequencing obtained 784 nucleotides encoding 261 amino acids. Sequenced COX-III gene fragments were aligned along with other catfish from Genbank using ClustalW program and genetic diversity among species was analyzed using the MEGA Version 7.0 software. Among all samples, there were substitution mutations at 78 nucleotide sites, and there were 14 variations in amino acids. Catfish from PM, KR, MP, and KS had the same amino acids as Hemibagrus nemurus (KJ573466.1), while EM catfish had eight different amino acids and catfish BSBJhad 12 different amino acids. Conclusion: Indonesian catfish divided into four clades. BBSJ Catfish were grouped with Pangasianodon gigas, EM catfish were grouped with Mystus rhegma, and KS catfish were grouped with Hemibagrus spilopterus, while catfish MS, KR, PM, and MP were grouped with H. nemurus.


Sign in / Sign up

Export Citation Format

Share Document