geographic populations
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 40)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 14 (4) ◽  
pp. 1642-1647
Author(s):  
Irina Agasyeva

One of the promising entomophages capable of controlling the abundance of the codling moth is Habrobracon hebetor Say. Natural populations of the gabrobragon can reduce the number of caterpillars of the corn moth to 22%, the garden moth to 35%, the cotton moth to 45%, and the gamma moth to 30%. This work aims to assess the parasitic activity of the gabrobragon as a regulator of the codling moth abundance in various geographic populations, to select a host insect for its mass breeding in laboratory conditions, and to assess the molecular genetic variability of the structure of H. hebetor populations. The capture of natural populations of the gabrobragon H. hebetor was carried out in apple orchards in Krasnodar Krai and Stavropol Krai of Russia using cassettes in which caterpillars of the codling moth were placed. As a result of the research, the natural starting population of the gabrobragon H. hebetor was captured, and a method for their maintenance and breeding was developed. The most effective host insect is the wax moth (Galleria mellonela L.), which resulted in 195 adults, compared to 98 of the mill moth (Ephestia kuhniella Zell.). The gabrobragon population introduced into the apple tree cenosis continued its reproduction in natural conditions and largely suppressed the number and harmfulness of the codling moth. The RAPD analysis of the Krasnodar and Stavropol populations of Habrobracon hebetor Say revealed a high level of DNA polymorphism and genetic diversity in the studied geographic populations of the gabrobragon. At the same time, intrapopulation variability was 87.1%, while interpopulation variability accounted for 12.9% of the total indicator. The limited gene flow (Nm = 3.298) results in relatively low identity (GI = 0.906) between populations and significant interpopulation variability. This indicates that the analyzed insect samples probably represent different geographic populations of the H. hebetor ectoparasite.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2672
Author(s):  
Shimeng Tan ◽  
Yanying Chen ◽  
Guoying Zhou ◽  
Junang Liu

Anthracnose, caused by Colletotrichum spp., is a significant disease affecting oil tea (Camellia oleifera Abel.). Extensive molecular studies have demonstrated that Colletotrichum fructicola is the dominant pathogen of oil tea anthracnose in China. This study aims to investigate differences in molecular processes and regulatory genes at a late stage of infection of C. fructicola, to aid in understanding differences in pathogenic mechanisms of C. fructicola of different geographic populations. We compared the pathogenicity of C. fructicola from different populations (Wuzhishan, Hainan province, and Shaoyang, Hunan province) and gene expression of representative strains of the two populations before and after inoculation in oil tea using RNA sequencing. The results revealed that C. fructicola from Wuzhishan has a more vital ability to impact oil tea leaf tissue. Following infection with oil tea leaves, up-regulated genes in the strains from two geographic populations were associated with galactosidase activity, glutamine family amino acid metabolism, arginine, and proline metabolism. Additionally, up-regulated gene lists associated with infection by Wuzhishan strains were significantly enriched in purine metabolism pathways, while Shaoyang strains were not. These results indicate that more transcriptional and translational activity and the greater regulation of the purine metabolism pathway in the C. fructicola of the Wuzhishan strain might contribute to its stronger pathogenicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei-Han Shao ◽  
Jian-Li Cheng ◽  
E Zhang

There is increasing evidence that species diversity is underestimated in the current taxonomy of widespread freshwater fishes. The bagrid species T. albomarginatus s.l. is mainly distributed in the lowlands of South China, as currently identified. A total of 40 localities (including the type locality), which covers most of its known range, were sampled. Molecular phylogenetic analyses based on concatenated mtDNA and nuclear genes recover nine highly supported lineages clustering into eight geographic populations. The integration of molecular evidence, morphological data, and geographic distribution demonstrates the delineation of T. albomarginatus s.l. as eight putative species. Four species, namely, T. albomarginatus, T. lani, T. analis, and T. zhangfei sp. nov. and the T. similis complex are taxonomically recognized herein. Moreover, T. zhangfei sp. nov. comprises two genetically distinct lineages with no morphological and geographical difference. This study also reveals aspects of estimation of divergence time, distribution, and ecological adaption within the T. albomarginatus group. The unraveling of the hidden species diversity of this lowland bagrid fish highlights the need for not only the molecular scrutiny of widely distributed species of South China but also the adjustment of current biodiversity conservation strategies to protect the largely overlooked diversity of fishes from low-elevation rapids.


2021 ◽  
Vol 5 (6) ◽  
Author(s):  
Jen-Pan Huang

Abstract The genealogical divergence index (gdi) was developed to aid in molecular species delimitation under the multispecies coalescent model, which has been shown to delimit genetic structures but not necessarily species. Although previous studies have used meta-analyses to show that gdi could be informative for distinguishing taxonomically good species, the biological and evolutionary implications of divergences showing different gdi values have yet to be studied. I showed that an increase in gdi value was correlated with later stages of divergence further along a speciation continuum in an Amazonian Hercules beetle system. Specifically, a gdi value of 0.7 or higher was associated with diverge between biological species that can coexist in geographic proximity while maintaining their evolutionary independence. Divergences between allopatric species that were conventionally given subspecific status, such as geographic taxa that may or may not be morphologically divergent, had gdi values that fell within the species delimitation ambiguous zone (0.2 < gdi < 0.7). However, the results could be drastically affected by the sampling design, i.e., the choice of different geographic populations and the lumping of distinct genetic groups when running the analyses. Different gdi values may prove to be biologically and evolutionarily informative should additional speciation continua from different empirical systems be investigated, and the results obtained may help with objectively delimiting species in the era of integrative taxonomy.


Author(s):  
Aigi Margus ◽  
Saija Piiroinen ◽  
Philipp Lehmann ◽  
Alessandro Grapputo ◽  
Leona Gilbert ◽  
...  

Although insect herbivores are known to evolve resistance to insecticides through multiple genetic mechanisms, resistance in individual species has been assumed to follow the same mechanism. While both mutations in the target site insensitivity and increased amplification are known to contribute to insecticide resistance, little is known about the degree to which geographic populations of the same species differ at the target site in a response to insecticides. We tested structural (e.g. mutation profiles) and regulatory (e.g. the gene expression of Ldace1 and Ldace2, AChE activity) differences between two populations (Vermont, USA and Belchow, Poland) of the Colorado potato beetle, Leptinotarsa decemlineata in their resistance to two commonly used groups of insecticides, organophosphates, and carbamates. We established that Vermont beetles were more resistant to azinphos-methyl and carbaryl insecticides compared to Belchow beetles, despite a similar frequency of resistance-associated alleles (i.e. S291G) in the Ldace2 gene. However, the Vermont population had two additional amino acid replacements (G192S, F402Y) in the Ldace1 gene, which were absent in the Belchow population. Moreover, the Vermont population showed higher expression of Ldace1 and was less sensitive to AChE inhibition by azinphos methyl oxon than the Belchow population. Therefore, the two populations have evolved different genetic mechanisms to adapt to organophosphate and carbamate insecticides.


2021 ◽  
Vol 9 (9) ◽  
pp. 1919
Author(s):  
Duanyong Zhou ◽  
Jianping Xu ◽  
Jianyong Dong ◽  
Haixia Li ◽  
Da Wang ◽  
...  

Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wei Wang ◽  
Chunyan Ma ◽  
Longling Ouyang ◽  
Wei Chen ◽  
Ming Zhao ◽  
...  

AbstractIn order to provide valuable guidelines for the conservation of germplasm of Lateolabrax maculatus, the genetic diversity and population structure analysis were evaluated for eight geographic populations along coastal regions of China, using 11 microsatellite DNA markers. The genetic parameters obtained showed that, eight populations can be clustered into two groups, the Northern group and the Southern group, concordant with their geographical positions. The UPGMA tree constructed according to the Nei’s genetic distance along with the structure analysis and discriminant analysis of principal component also supported this result. This might be explained by the geographic separation and the divergent environmental conditions among the populations. It's worth noting that, QD (Qingdao) population from northern area was assigned to the Southern group and showed a close genetic relationship and similar genetic constitution with the southern populations. We speculated that large scales of anthropogenic transportation of wild fries from QD populations to the southern aquaculture areas in history should be the primary cause. The populations from GY (Ganyu), RD (Rudong) and BH (Binhai) had higher genetic diversity and showed limited genetic exchange with other populations, indicating better conservation of the natural resources in these regions. All populations were indicated to have experienced bottleneck events in history.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 917
Author(s):  
Peng-Yan Zhou ◽  
Li-Xing Hui ◽  
Shu-Jing Huang ◽  
Zhou-Xian Ni ◽  
Fa-Xin Yu ◽  
...  

Liriodendron chinense (Hemsley) Sargent is a Class II protected plant in China as natural populations are on the verge of extinction. There is still a lack of systematic research on the genetic resources of its geographic populations. In this study, we used 20 pairs of SSR markers with high polymorphism to analyze a total of 808 L. chinense samples from 22 regions, and 63 Liriodendron tulipifera Linn samples from 2 regions were used as a comparison group. The results revealed a total of 78 alleles in L. chinense, and the average expected heterozygosity (He) was 0.558, showing a low level of genetic diversity. The degree of differentiation of L. chinense was high, with the differentiation coefficient (Fst) as high as 0.302, which is related to the low gene flow (Nm = 0.578). Based on the genetic structure, principal coordinate analysis (PCoA) and phylogenetic analysis of 24 Liriodendron spp. populations, L. chinense and L. tulipifera had obvious differentiation, while the differentiation between L. chinense geographic populations was very large and irregular. Inbreeding appears within the geographic populations, and the level of genetic diversity is very low. In order to protect the genetic diversity of L. chinense, in addition to protecting the existing population as much as possible, artificial cultivation should introduce materials from multiple populations.


Sign in / Sign up

Export Citation Format

Share Document