scholarly journals 3D general-measure inversion of crosswell EM data using a direct solver

2021 ◽  
Vol 18 (1) ◽  
pp. 124-133
Author(s):  
Xuan Wang ◽  
Jinsong Shen ◽  
Zhigang Wang

Abstract We present a three-dimensional (3D) general-measure inversion scheme of crosswell electromagnetic (EM) data in the frequency domain with a direct forward solver. In the forward problem, we discretised the EM Helmholtz equation by the staggered-grid finite difference (SGFD) scheme and solved it using the Intel MKL PARDISO direct solver. By applying a direct solver, we simultaneously solved the multisource forward problems at a given frequency. In the inversion, we integrated a general measure of data misfit and model constraints with linearised least-squares inversion. We reconstructed a model with blocky features by selecting the appropriate measure parameters and model constraints. We used the adjoint equation method to explicitly calculate the Jacobian matrix, which facilitated the determination of an appropriate initial value for the regularisation coefficient in the objective function. We illustrated the inversion scheme using synthetic crosswell EM data with a general measure, the L2 norm, and, specifically, two mixed norms.

Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


2013 ◽  
Vol 19 (S5) ◽  
pp. 58-61 ◽  
Author(s):  
Mino Yang ◽  
Jun-Ho Lee ◽  
Hee-Goo Kim ◽  
Euna Kim ◽  
Young-Nam Kwon ◽  
...  

AbstractDistribution of wax in laser printer toner was observed using an ultra-high-voltage (UHV) and a medium-voltage transmission electron microscope (TEM). As the radius of the wax spans a hundred to greater than a thousand nanometers, its three-dimensional recognition via TEM requires large depth of focus (DOF) for a volumetric specimen. A tomogram with a series of the captured images would allow the determination of their spatial distribution. In this study, bright-field (BF) images acquired with UHV-TEM at a high tilt angle prevented the construction of the tomogram. Conversely, the Z-contrast images acquired by the medium-voltage TEM produced a successful tomogram. The spatial resolution for both is discussed, illustrating that the image degradation was primarily caused by beam divergence of the Z-contrast image and the combination of DOF and chromatic aberration of the BF image from the UHV-TEM.


Author(s):  
Jiehai Zhang ◽  
Arun Muley ◽  
Joseph B. Borghese ◽  
Raj M. Manglik

Enhanced heat transfer characteristics of low Reynolds number airflows in three-dimensional sinusoidal wavy plate-fin channels are investigated. For the computational simulation, steady state, constant property, periodically developed, laminar forced convection is considered with the channel surface at the uniform heat flux condition; the wavy-fin is modeled by its two asymptotic limits of 100% and zero fin efficiency. The governing equations are solved numerically using finite-volume techniques for a non-orthogonal, non-staggered grid. Computational results for velocity and temperature distribution, isothermal Fanning friction factor f and Colburn factor j are presented for airflow rates in the range of 10 ≤ Re ≤ 1500. The numerical results are further compared with experimental data, with excellent agreement, for two different wavy-fin geometries. The influence of fin density on the flow behavior and the enhanced convection heat transfer are highlighted. Depending on the flow rate, a complex flow structure is observed, which is characterized by the generation, spatial growth and dissipation of vortices in the trough region of the wavy channel. The thermal boundary layers on the fin surface are periodically disrupted, resulting in high local heat fluxes. The overall heat transfer performance is improved considerably, compared to the straight channel with the same cross-section, with a relatively smaller increase in the associated pressure drop penalty.


Sign in / Sign up

Export Citation Format

Share Document