fibronectin fragment
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 8)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 10 (19) ◽  
pp. 4496
Author(s):  
Hsien-Tsung Lu ◽  
Jeng-Wei Lu ◽  
Chian-Her Lee ◽  
Yi-Jen Peng ◽  
Herng-Sheng Lee ◽  
...  

Proteolytic fragments of fibronectin can have catabolic effects on cartilage, menisci, and synovium. Previous studies have reported that Toll-like receptor (TLR) signaling pathways might be associated with joint inflammation and joint destruction. Platelet-rich plasma (PRP) is increasingly being used to treat a range of joint conditions; however, it has yet to be determined whether PRP influences fibronectin fragment (FN-f) procatabolic activity and TLRs. In this study, human primary culture cells were treated with 30 kDa FN-f with/without PRP co-incubation, and then analyzed using real-time PCR to determine gene expression levels in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts. Protein levels were evaluated by Western immunoblotting. This study observed an increase in the protein expression of matrix metalloproteinases (MMPs), Toll-like receptor 2 (TLR2), nitric oxide synthase 2 (NOS2), prostaglandin-endoperoxide synthase (PTGS2), and cyclooxygenase 2 (COX2) in articular chondrocytes, meniscal fibrochondrocytes, and synovial fibroblasts following insult with 30 kDa FN-f. Upregulation of these genes was significantly attenuated by PRP treatment. TLR2 and matrix metalloproteinase 13 (MMP-13) were also significantly attenuated by cotreatment with 30 kDa FN-f + PRP + TLR2 inhibitor. PRP treatment was shown to attenuate the 30 kDa FN-f-induced MMP-13 expression associated with the decreased expression of TLR2 in osteoarthritic chondrocytes and synovial fibroblasts. PRP treatment was also shown to attenuate procatabolic activity associated with MMP-13 expression via the TLR2 signaling pathway.


2018 ◽  
Vol 19 (11) ◽  
pp. 3321 ◽  
Author(s):  
Evangelos Liamas ◽  
Karina Kubiak-Ossowska ◽  
Richard Black ◽  
Owen Thomas ◽  
Zhenyu Zhang ◽  
...  

The effect of surface chemistry on the adsorption characteristics of a fibronectin fragment (FNIII8–10) was investigated using fully atomistic molecular dynamics simulations. Model surfaces were constructed to replicate self-assembled monolayers terminated with methyl, hydroxyl, amine, and carboxyl moieties. It was found that adsorption of FNIII8–10 on charged surfaces is rapid, specific, and driven by electrostatic interactions, and that the anchoring residues are either polar uncharged or of opposing charge to that of the targeted surfaces. On charged surfaces the presence of a strongly bound layer of water molecules and ions hinders FNIII8–10 adsorption. In contrast, adsorption kinetics on uncharged surfaces are slow and non-specific, as they are driven by van der Waals interactions, and the anchoring residues are polar uncharged. Due to existence of a positively charged area around its cell-binding region, FNIII8–10 is available for subsequent cell binding when adsorbed on a positively charged surface, but not when adsorbed on a negatively charged surface. On uncharged surfaces, the availability of the fibronectin fragment’s cell-binding region is not clearly distinguished because adsorption is much less specific.


Nanomedicine ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. 899-912 ◽  
Author(s):  
Jordi Guillem-Marti ◽  
Gerard Boix-Lemonche ◽  
Dencho Gugutkov ◽  
Maria-Pau Ginebra ◽  
George Altankov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document