scholarly journals Canonical NF-κB signaling regulates satellite stem cell homeostasis and function during regenerative myogenesis

2018 ◽  
Vol 11 (1) ◽  
pp. 53-66 ◽  
Author(s):  
Alex R Straughn ◽  
Sajedah M Hindi ◽  
Guangyan Xiong ◽  
Ashok Kumar

Abstract Skeletal muscle regeneration in adults is attributed to the presence of satellite stem cells that proliferate, differentiate, and eventually fuse with injured myofibers. However, the signaling mechanisms that regulate satellite cell homeostasis and function remain less understood. While IKKβ-mediated canonical NF-κB signaling has been implicated in the regulation of myogenesis and skeletal muscle mass, its role in the regulation of satellite cell function during muscle regeneration has not been fully elucidated. Here, we report that canonical NF-κB signaling is induced in skeletal muscle upon injury. Satellite cell-specific inducible ablation of IKKβ attenuates skeletal muscle regeneration in adult mice. Targeted ablation of IKKβ also reduces the number of satellite cells in injured skeletal muscle of adult mice, potentially through inhibiting their proliferation and survival. We also demonstrate that the inhibition of specific components of the canonical NF-κB pathway causes precocious differentiation of cultured satellite cells both ex vivo and in vitro. Finally, our results highlight that the constitutive activation of canonical NF-κB signaling in satellite cells also attenuates skeletal muscle regeneration following injury in adult mice. Collectively, our study demonstrates that the proper regulation of canonical NF-κB signaling is important for the regeneration of adult skeletal muscle.

Development ◽  
2011 ◽  
Vol 138 (19) ◽  
pp. 4333-4333 ◽  
Author(s):  
R. Sambasivan ◽  
R. Yao ◽  
A. Kissenpfennig ◽  
L. Van Wittenberghe ◽  
A. Paldi ◽  
...  

2004 ◽  
Vol 166 (3) ◽  
pp. 347-357 ◽  
Author(s):  
Peter S. Zammit ◽  
Jon P. Golding ◽  
Yosuke Nagata ◽  
Valérie Hudon ◽  
Terence A. Partridge ◽  
...  

Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool.


2010 ◽  
Vol 21 (13) ◽  
pp. 2182-2190 ◽  
Author(s):  
Charlene Clow ◽  
Bernard J. Jasmin

In adult skeletal muscle, brain-derived neurotrophic factor (BDNF) is expressed in myogenic progenitors known as satellite cells. To functionally address the role of BDNF in muscle satellite cells and regeneration in vivo, we generated a mouse in which BDNF is specifically depleted from skeletal muscle cells. For comparative purposes, and to determine the specific role of muscle-derived BDNF, we also examined muscles of the complete BDNF−/− mouse. In both models, expression of the satellite cell marker Pax7 was significantly decreased. Furthermore, proliferation and differentiation of primary myoblasts was abnormal, exhibiting delayed induction of several markers of differentiation as well as decreased myotube size. Treatment with exogenous BDNF protein was sufficient to rescue normal gene expression and myotube size. Because satellite cells are responsible for postnatal growth and repair of skeletal muscle, we next examined whether regenerative capacity was compromised. After injury, BDNF-depleted muscle showed delayed expression of several molecular markers of regeneration, as well as delayed appearance of newly regenerated fibers. Recovery of wild-type BDNF levels was sufficient to restore normal regeneration. Together, these findings suggest that BDNF plays an important role in regulating satellite cell function and regeneration in vivo, particularly during early stages.


2015 ◽  
Vol 309 (2) ◽  
pp. E122-E131 ◽  
Author(s):  
Preeti Chandrashekar ◽  
Ravikumar Manickam ◽  
Xiaojia Ge ◽  
Sabeera Bonala ◽  
Craig McFarlane ◽  
...  

Peroxisome proliferator-activated receptor β/δ ( PPARβ/δ) is a ubiquitously expressed gene with higher levels observed in skeletal muscle. Recently, our laboratory showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935–12951, 2012) that PPARβ/δ modulates myostatin activity to induce myogenesis in skeletal muscle. In the present study, we show that PPARβ/δ-null mice display reduced body weight, skeletal muscle weight, and myofiber atrophy during postnatal development. In addition, a significant reduction in satellite cell number was observed in PPARβ/δ-null mice, suggesting a role for PPARβ/δ in muscle regeneration. To investigate this, tibialis anterior muscles were injured with notexin, and muscle regeneration was monitored on days 3, 5, 7, and 28 postinjury. Immunohistochemical analysis revealed an increased inflammatory response and reduced myoblast proliferation in regenerating muscle from PPARβ/δ-null mice. Histological analysis confirmed that the regenerated muscle fibers of PPARβ/δ-null mice maintained an atrophy phenotype with reduced numbers of centrally placed nuclei. Even though satellite cell numbers were reduced before injury, satellite cell self-renewal was found to be unaffected in PPARβ/δ-null mice after regeneration. Previously, our laboratory had showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935–12951, 2012) that inactivation of PPARβ/δ increases myostatin signaling and inhibits myogenesis. Our results here indeed confirm that inactivation of myostatin signaling rescues the atrophy phenotype and improves muscle fiber cross-sectional area in both uninjured and regenerated tibialis anterior muscle from PPARβ/δ-null mice. Taken together, these data suggest that absence of PPARβ/δ leads to loss of satellite cells, impaired skeletal muscle regeneration, and postnatal myogenesis. Furthermore, our results also demonstrate that functional antagonism of myostatin has utility in rescuing these effects.


2021 ◽  
Author(s):  
Kotaro Hirano ◽  
Masaki Tsuchiya ◽  
Seiji Takabayashi ◽  
Kohjiro Nagao ◽  
Yasuo Kitajima ◽  
...  

AbstractMuscle satellite cells (MuSCs), myogenic stem cells in skeletal muscle, play an essential role in muscle regeneration. During the regeneration process, cues from the surrounding microenvironment are critical for the proliferation and function of MuSCs. However, the mechanism by which mechanical stimuli from the MuSCs niche is converted into biochemical signals to promote muscle regeneration is yet to be determined. Here, we show that PIEZO1, a calcium ion (Ca2+)-permeable cation channel that is activated by membrane tension, mediates the spontaneous Ca2+ influx to controls the regenerative function of MuSCs. Our genetically engineering approach in mice revealed that PIEZO1 is functionally expressed in MuSCs, and the conditional deletion of Piezo1 in MuSCs delays myofiber regeneration after myofiber injury, which is at least in part due to the growth defect in MuSCs via the reduction in RhoA-mediated actomyosin formation. Thus, we provide the first evidence in MuSCs that PIEZO1, a bona fide mechanosensitive ion channel, promotes the proliferative and regenerative function during skeletal muscle regeneration.


2018 ◽  
Vol 315 (1) ◽  
pp. R90-R103 ◽  
Author(s):  
Chayanit Chaweewannakorn ◽  
Masahiro Tsuchiya ◽  
Masashi Koide ◽  
Hiroyasu Hatakeyama ◽  
Yukinori Tanaka ◽  
...  

Skeletal muscle regeneration after injury is a complex process involving interactions between inflammatory microenvironments and satellite cells. Interleukin (IL)-1 is a key mediator of inflammatory responses and exerts pleiotropic impacts on various cell types. Thus, we aimed to investigate the role of IL-1 during skeletal muscle regeneration. We herein show that IL-1α/β-double knockout (IL-1KO) mice exhibit delayed muscle regeneration after cardiotoxin (CTX) injection, characterized by delayed infiltrations of immune cells accompanied by suppressed local production of proinflammatory factors including IL-6 and delayed increase of paired box 7 (PAX7)-positive satellite cells postinjury compared with those of wild-type (WT) mice. A series of in vitro experiments using satellite cells obtained from the IL-1KO mice unexpectedly revealed that IL-1KO myoblasts have impairments in terms of both proliferation and differentiation, both of which were reversed by exogenous IL-1β administration in culture. Intriguingly, the delay in myogenesis was not attributable to the myogenic transcriptional program since MyoD and myogenin were highly upregulated in IL-1KO cells, instead appearing, at least in part, to be due to dysregulation of cellular fusion events, possibly resulting from aberrant actin regulatory systems. We conclude that IL-1 plays a positive role in muscle regeneration by coordinating the initial interactions among inflammatory microenvironments and satellite cells. Our findings also provide compelling evidence that IL-1 is intimately engaged in regulating the fundamental function of myocytes.


2018 ◽  
Vol 315 (5) ◽  
pp. C714-C721 ◽  
Author(s):  
Irena A. Rebalka ◽  
Cynthia M. F. Monaco ◽  
Nina E. Varah ◽  
Thorsten Berger ◽  
Donna M. D’souza ◽  
...  

Lipocalin-2 (LCN2) is an adipokine previously described for its contribution to numerous processes, including innate immunity and energy metabolism. LCN2 has also been demonstrated to be an extracellular matrix (ECM) regulator through its association with the ECM protease matrix metalloproteinase-9 (MMP-9). With the global rise in obesity and the associated comorbidities related to increasing adiposity, it is imperative to gain an understanding of the cross talk between adipose tissue and other metabolic tissues, such as skeletal muscle. Given the function of LCN2 on the ECM in other tissues and the importance of matrix remodeling in skeletal muscle regeneration, we examined the localization and expression of LCN2 in uninjured and regenerating wild-type skeletal muscle and assessed the impact of LCN2 deletion (LCN2−/−) on skeletal muscle repair following cardiotoxin injury. Though LCN2 was minimally present in uninjured skeletal muscle, its expression was increased significantly at 1 and 2 days postinjury, with expression present in Pax7-positive satellite cells. Although satellite cell content was unchanged, the ability of quiescent satellite cells to become activated was significantly impaired in LCN2−/− skeletal muscles. Skeletal muscle regeneration was also significantly compromised as evidenced by decreased embryonic myosin heavy chain expression and smaller regenerating myofiber areas. Consistent with a role for LCN2 in MMP-9 regulation, regenerating muscle also displayed a significant increase in fibrosis and lower ( P = 0.07) MMP-9 activity in LCN2−/− mice at 2 days postinjury. These data highlight a novel role for LCN2 in muscle regeneration and suggest that changes in adipokine expression can significantly impact skeletal muscle repair.


Sign in / Sign up

Export Citation Format

Share Document