Ultrastructural evidence for an unusual mode of ciliogenesis in mouse multiciliated epithelia

Microscopy ◽  
2020 ◽  
Author(s):  
Keishi Narita ◽  
Sen Takeda

Abstract Multiciliogenesis is a cascading process for generating hundreds of motile cilia in single cells. In vertebrates, this process has been investigated in the ependyma of brain ventricles and the ciliated epithelia of the airway and oviduct. Although the early steps to amplify centrioles have been characterized in molecular detail, subsequent steps to establish multicilia have been relatively overlooked. Here, we focused on unusual cilia-related structures previously observed in wild-type mouse ependyma using transmission electron microscopy and analyzed their ultrastructural features and the frequency of their occurrence. In the ependyma, $\sim$5% of cilia existed as bundles; while the majority of the bundles were paired, bundles of more than three cilia were also found. Furthermore, apical protrusions harboring multiple sets of axonemes were occasionally observed (0–2 per section), suggesting an unusual mode of ciliogenesis. In trachea and oviduct epithelia, ciliary bundles were absent, but protrusions containing multiple axonemes were observed. At the base of such protrusions, certain axonemes were completely enwrapped by membranes, whereas others remained incompletely enwrapped. These data suggested that the late steps of multiciliogenesis might include a unique process underlying the development of cilia, which is distinct from the ciliogenesis of primary cilia.

Reproduction ◽  
2012 ◽  
Vol 143 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Sayaka Koyanagi ◽  
Hiroko Hamasaki ◽  
Satoshi Sekiguchi ◽  
Kenshiro Hara ◽  
Yoshiyuki Ishii ◽  
...  

Maternal proteins are rapidly degraded by the ubiquitin–proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficientgad. Furthermore, we assessed morphological features ingadmouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the ‘maternal antigen that embryos require’ (NLRP5 (MATER)) protein level increased significantly ingadmouse ova compared with that in wild-type mice. In an ultrastructural study,gadmouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.


Author(s):  
Ian G. Thompson

With the advent of new techniques for isolating single cells for biochemical and physiological investigation, an important consideration is the morphological integrity of these cells after dissociation from the intact tissue. Do isolated cells retain the degree of structural differentiation that is apparent in vivo? The principal secretory cells of the avian salt gland are an example of cells that are highly differentiated in form under conditions of physiological stress. This report describes the ultrastructure of dissociated salt gland cells as visualized with the scanning and transmission electron microscope.The dissociation procedure employed here was the same as that applied to the exocrine pancreas. For transmission electron microscopy the cell suspension was centrifuged and the resultant pellet prefixed in cacodylate buffered 3% glutaraldehyde- 1% paraformaldehyde, postfixed in unbuffered 1% osmium tetroxide, and embedded in epon-araldite. An assessment of the cell surface coat following enzymatic dissociation was facilitated by the inclusion of ruthenium red (500 ppm) in both the aldehyde and osmium fixation steps.


Author(s):  
S. Bricker ◽  
G. M. Happ

The male mealworm, Tenebrio molitor produces a spermatophore to facilitate transfer of sperm to the female. The wall of the spermatophore is largely produced from the secretions of the paired bean-shaped accessory glands (BAGs). As the cottony pre-spermatophoric mass from the BAGs comes together in the ejaculatory duct where it is molded into the spermatophore, it becomes tougher and more elastic. The mechanisms involved in this stabilization of the wall of the spermatophore were unknown. Mechanisms of stabilization of other acellular structures assembled in extracellular space include quinone-tanning and β-sclerotization in cuticle, shear forces in silk, and pH changes in the spermatophore of Rhodnius. The cells found in the epithelium of the upper ejaculatory duct of the mealworm beetle were examined by transmission electron microscopy for ultrastructural evidence of a role in the stabilization of the spermatophore wall.


Data ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 118
Author(s):  
Michael J. Jennings ◽  
Timothy C. A. Molteno ◽  
Robert J. Walker ◽  
Jennifer J. Bedford ◽  
John P. Leader ◽  
...  

The primary cilium has recently become the focus of intensive investigations into understanding the physical structure and processes of eukaryotic cells. This paper describes two tilt-series image datasets, acquired by transmission electron microscopy, of in situ chick-embryo sternal-cartilage primary cilia. These data have been released under an open-access licence, and are well suited to tomographic reconstruction and modelling of the cilium.


2019 ◽  
Vol 63 (1) ◽  
Author(s):  
Manuela Costanzo ◽  
Manuela Malatesta

Transmission electron microscopy is the technique of choice to visualize the spatial relationships between nanoconstructs and cells and especially to monitor the uptake process of nanomaterials. It is therefore crucial that the cell surface be preserved in its integrity, to obtain reliable ultrastructural evidence: the plasmalemma represents the biological barrier the nanomaterials have to cross, and the mode of membrane-nanoconstruct interaction is responsible for the intracellular fate of the nanomaterials. In this paper, we describe a simple and inexpensive method to process cell monolayers for ultrastructural morphology and immunocytochemistry, ensuring consistent preservation of the cell surface and of the occurring interactions with nanoparticles of different chemical composition.


2020 ◽  
Vol 68 (10) ◽  
pp. 651-668
Author(s):  
Hiromi Hongo ◽  
Tomoka Hasegawa ◽  
Masami Saito ◽  
Kanako Tsuboi ◽  
Tomomaya Yamamoto ◽  
...  

To demonstrate the ultrastructure of osteocytic osteolysis and clarify whether osteocytic osteolysis occurs independently of osteoclastic activities, we examined osteocytes and their lacunae in the femora and tibiae of 11-week-old male wild-type and Rankl−/− mice after injection of human parathyroid hormone (PTH) [1-34] (80 µg/kg/dose). Serum calcium concentration rose temporarily 1 hr after PTH administration in wild-type and Rankl−/− mice, when renal arteries and veins were ligated. After 6 hr, enlargement of osteocytic lacunae was evident in the cortical bones of wild-type and Rankl−/− mice, but not so in their metaphyses. Von Kossa staining and transmission electron microscopy showed broadly demineralized bone matrix peripheral to enlarged osteocytic lacunae, which contained fragmented collagen fibrils and islets of mineralized matrices. Nano-indentation by atomic force microscopy revealed the reduced elastic modulus of the PTH-treated osteocytic perilacunar matrix, despite the microscopic verification of mineralized matrix in that region. In addition, 44Ca deposition was detected by isotope microscopy and calcein labeling in the eroded osteocytic lacunae of wild-type and Rankl−/− mice. Taken together, our findings suggest that osteocytes can erode the bone matrix around them and deposit minerals on their lacunar walls independently of osteoclastic activity, at least in the murine cortical bone. (J Histochem Cytochem 68: –XXX, 2020)


2005 ◽  
Vol 68 (2) ◽  
pp. 216-224 ◽  
Author(s):  
MARLENE E. JANES ◽  
K. S. KIM ◽  
M. G. JOHNSON

We investigated the ability of enterohemorrhagic Escherichia coli O157:H7 to spread in wounded apple tissue by transmission electron microscopy. Red Delicious apples were wounded with an artist knife (7 mm depth) and either inoculated with 10 μl per wound of decimally diluted E. coli O157:H7 or submerged into E. coli O157:H7 suspended in sterile distilled water and then stored at 37°C for 24 h. Transmission electron microscopy showed E. coli O157:H7 formed bacterial aggregates near the apple cell walls, and single cells were in close proximity to the apple cell wall surfaces and to plasma membranes. E. coli O157:H7 presence caused degradation of plasma membranes and release of the cytoplasm contents of the apple cortical cells into the central vacuole. Apple tissue turgor pressure tests showed that the apple cells infected with E. coli O157:H7 isolates were more likely to rupture than the control noninoculated apple cells. E. coli O157:H7 cells grown in apple tissue showed the formation of granules and vesicles within the bacterial cytoplasma and separation of the plasma membranes. Our study shows that E. coli O157:H7 can grow and survive in the apple tissue environment by causing degradation of the apple cellular components.


Sign in / Sign up

Export Citation Format

Share Document