Fibre width measurement and quantification of filler size distribution in paper-based materials by SEM and image analysis

2009 ◽  
Vol 59 (2) ◽  
pp. 91-102 ◽  
Author(s):  
H. Bennis ◽  
R. Benslimane ◽  
S. Vicini ◽  
A. Mairani ◽  
E. Princi
2009 ◽  
Vol 81 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Luiz F. Pires ◽  
Klaus Reichardt ◽  
Miguel Cooper ◽  
Fabio A.M. Cássaro ◽  
Nivea M.P. Dias ◽  
...  

Soil pore structure characterization using 2-D image analysis constitutes a simple method to obtain essential information related to soil porosity and pore size distribution (PSD). Such information is important to infer on soil quality, which is related to soil structure and transport processes inside the soil. Most of the time soils are submitted to wetting and drying cycles (W-D), which can cause important changes in soils with damaged structures. This report uses 2-D image analysis to evaluate possible modifications induced by W-D cycles on the structure of damaged soil samples. Samples of three tropical soils (Geric Ferralsol, GF; Eutric Nitosol, EN; and Rhodic Ferralsol, RF) were submitted to three treatments: 0WD, the control treatment in which samples were not submitted to any W-D cycle; 3WD and 9WD with samples submitted to 3 and 9 consecutive W-D cycles, respectively. It was observed that W-D cycles produced significant changes in large irregular pores of the GF and RF soils, and in rounded pores of the EN soil. Nevertheless, important changes in smaller pores (35, 75, and 150 µm) were also observed for all soils. As an overall consideration, it can be said that the use of image analysis helped to explain important changes in soil pore systems (shape, number, and size distribution) as consequence of W-D cycles.


Sign in / Sign up

Export Citation Format

Share Document