Establishment of mixed plantations of Pinus sylvestris var. mongolica and Populus × xiaozhuanica may not be appropriate: evidence from litter decomposition

2019 ◽  
Vol 12 (5) ◽  
pp. 857-870 ◽  
Author(s):  
Huan-Huan Song ◽  
Tao Yan ◽  
De-Hui Zeng

Abstract Aims Mongolian pine (Pinus sylvestris var. mongolica) and Xiaozhuan poplar (Populus × xiaozhuanica) are two predominant afforestation tree species in the semi-arid sandy lands of northeast China, which are characterized by poor soil nutrients. Plant litter decomposition plays a critical role in regulating nutrient cycling in terrestrial ecosystems. Admixture of broadleaf litter to conifer litter is expected to improve litter decomposition and soil fertility, and thus productivity. However, the effects on the decomposition of litter mixture of the above two tree species are not well understood. Therefore, it is essential to assess the decomposition performance of litter mixture with the aim of improving forest nutrient management and the establishment of mixed plantation. Appropriate forest management practice is critical for the sustainability of site productivity in plantation forests. Methods We conducted a field litterbag decomposition transplant experiment for single pine litter, single poplar litter and their mixture in a pine stand, a poplar stand and an adjacent grassland for 16 months in the Keerqin Sandy Lands, northeast China. Important Findings After 16 months of incubation, there remained significantly more litter mass of pine (73.8%) than of poplar (67.2%). The mass remaining was positively correlated with litter carbon (C):nitrogen (N), C:phosphorus (P) and lignin:N ratios, and negatively with litter N and P concentrations, which suggests that initial litter chemical properties were an important factor affecting litter decay. Generally, net N and P immobilizations were observed during decomposition. This indicates that litter decomposition in this area was N-limited as N was progressively immobilized, and then tended to induce P limitation. Thus, we strongly recommend prohibiting litter harvesting by local residents to maintain soil fertility in this nutrient-poor area. Our results do not support the home-field advantage hypothesis, as illustrated by the fact that, in most cases, mass loss of litter from native habitat was comparable to that in transplanted habitats during decomposition. Furthermore, a dominant additive effect was detected, indicating that the establishment of mixed plantation may not be appropriate for these two species.

2017 ◽  
Vol 105 (3) ◽  
pp. 801-815 ◽  
Author(s):  
Mathieu Santonja ◽  
Catherine Fernandez ◽  
Magali Proffit ◽  
Charles Gers ◽  
Thierry Gauquelin ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 458
Author(s):  
Haiyan Deng ◽  
Linlin Shen ◽  
Jiaqi Yang ◽  
Xiaoyong Mo

Background and Objectives: The stable stand structure of mixed plantations is the basis of giving full play to forest ecological function and benefit. However, the monocultural Eucalyptus plantations with large-scale and successive planting that caused ecological problems such as reduced species diversity and loss of soil nutrients have presented to be unstable and vulnerable, especially in typhoon-prone areas. The objective of this study was to evaluate the nonspatial structure difference and the stand stability of pure and mixed-Eucalyptus forests, to find out the best mixed pattern of Eucalyptus forests with the most stability in typhoon-prone areas. Materials and Methods: In this study, we randomly investigated eight plots of 30 m × 30 m in pure and mixed-Eucalyptus (Eucalyptus urophylla S. T. Blake × E. grandis W. Hill) plantations of different tree species (Neolamarckia cadamba (Roxb.) Bosser, Acacia mangium Willd., and Pinus elliottii var. Elliottii Engelm. × P. caribaea Morelet) on growth status, characterized and compared the distribution of nonspatial structure of the monoculture and mixtures, and evaluated the stand quality and stability from eight indexes of the nonspatial structure, including preservation rate, stand density, height, diameter, stem form, degree of stem inclination, tree-species composition, and age structure. Results: Eucalyptus surviving in the mixed plantation of Eucalyptus and A. mangium (EA) and in the mixed plantation of Eucalyptus and P. elliottii × P. caribaea (EP) were 5.0% and 7.6% greater than those in pure Eucalyptus plantation (EE), respectively, while only the stand preservation rate of EA was greater (+2.9%) than that of the pure Eucalyptus plantation. The proportions of all mixtures in the height class greater than 7 m were fewer than that of EE. The proportions of EA and mixed plantation of Eucalyptus and N. cadamba (EN) in the diameter class greater than 7 m were 10.6% and 7.8%, respectively, more than that of EE. EN had the highest ratio of branching visibly (41.0%), EA had the highest ratio of inclined stems (8.1%), and EP had the most straight and complete stem form (68.7%). The stand stability of the mixed plantation of Eucalyptus and A. mangium presented to be optimal, as its subordinate function value (0.76) and state value (ω = 0.61) of real stand were the largest. Conclusions: A. mangium is a superior tree species to mix with Eucalyptus for a more stable stand structure in the early growth stage to approach an evident and immense stability and resistance, which is of great significance for the forest restoration of Eucalyptus in response to extreme climate and forest management.


2021 ◽  
Vol 125 ◽  
pp. 107554
Author(s):  
Antoine Lecerf ◽  
Aurélie Cébron ◽  
Franck Gilbert ◽  
Michael Danger ◽  
Hélène Roussel ◽  
...  

2013 ◽  
Vol 374 (1-2) ◽  
pp. 677-688 ◽  
Author(s):  
Wei Wang ◽  
Xinyue Zhang ◽  
Na Tao ◽  
De Ao ◽  
Wenjing Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document