scholarly journals Inferring the role of pit membranes in solute transport from solute exclusion studies in living conifer stems

2020 ◽  
Vol 71 (9) ◽  
pp. 2828-2837
Author(s):  
Dongmei Yang ◽  
Kailu Wei ◽  
Junhui Li ◽  
Guoquan Peng ◽  
Melvin T Tyree

Abstract The functional role of pits between living and dead cells has been inferred from anatomical studies but amassing physiological evidence has been challenging. Centrifugation methods were used to strip water from xylem conduits, permitting a more quantitative gravimetric determination of the water and solid contents of cell walls than is possible by more traditional methods. Quantitative anatomical evidence was used to evaluate the water volume in xylem conduits and the water content of living cells. Quantitative perfusion of stems with polyethylene glycol of different molecular weight was used to determine the solute-free space. We measured the portioning of water and solute-free space among anatomical components in stems and demonstrated that lignin impeded the free movement of solutes with molecular weight >300. Hence, movement of large solutes from living cells to xylem conduits is necessarily confined to pit structures that permit transmembrane solute transport via primary walls without lignin. The functional role of pits was additionally indicated by combining data in this paper with previous studies of unusual osmotic relationships in woody species that lack pits between dead wood fibers and vessels. The absence of pits, combined with the evidence of exclusion of solutes of molecular weight >300, explains the unexpected osmotic properties.

2009 ◽  
Vol 221 (03) ◽  
Author(s):  
B Steiger ◽  
I Leuschner ◽  
D Denkhaus ◽  
D von Schweinitz ◽  
T Pietsch
Keyword(s):  

2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document