Downward Löwenheim–Skolem Theorem and interpolation in logics with constructors

2015 ◽  
Vol 27 (6) ◽  
pp. 1717-1752 ◽  
Author(s):  
Daniel Găină
Keyword(s):  
1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.


1968 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Richmond H. Thomason

In Kripke [8] the first-order intuitionjstic predicate calculus (without identity) is proved semantically complete with respect to a certain model theory, in the sense that every formula of this calculus is shown to be provable if and only if it is valid. Metatheorems of this sort are frequently called weak completeness theorems—the object of the present paper is to extend Kripke's result to obtain a strong completeness theorem for the intuitionistic predicate calculus of first order; i.e., we will show that a formula A of this calculus can be deduced from a set Γ of formulas if and only if Γ implies A. In notes 3 and 5, below, we will indicate how to account for identity, as well. Our proof of the completeness theorem employs techniques adapted from Henkin [6], and makes no use of semantic tableaux; this proof will also yield a Löwenheim-Skolem theorem for the modeling.


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550048 ◽  
Author(s):  
Tsiu-Kwen Lee

Let R be a prime ring with extended centroid C. We prove that an additive map from R into RC + C can be characterized in terms of left and right b-generalized derivations if it has a generalized derivation expansion. As a consequence, a generalization of the Noether–Skolem theorem is proved among other things: A linear map from a finite-dimensional central simple algebra into itself is an elementary operator if it has a generalized derivation expansion.


1979 ◽  
Vol 44 (4) ◽  
pp. 599-608 ◽  
Author(s):  
John T. Baldwin

There are two origins for first-order theories. One type of theory arises by generalizing the common features of a number of different structures, e.g. the theory of groups, and formulating a set of axioms to encode these common features. Here the set of axioms is well understood, frequently it is finite or at least recursive, but there usually is no clear understanding of all the logical consequences of these axioms. The second type of theory arises by considering the set, T = Th(A), of all sentences true in a fixed structure A,3 e.g. the theory of arithmetic (N, +, 0) or the theory of the field of complex numbers (alias: the theory of algebraically closed fields of characteristic zero). The second case gives little more insight as to the truth in A (i.e. membership in T) of a given sentence ∅. But it does guarantee that for a given sentence ∅, either ∅ or ¬∅ is in T, that is, that T is a complete theory. When does a theory T of the first type, i.e. with well-understood axioms, posses this completeness property? An obvious sufficient condition is that T be secretly of the second type, that it have only one model, or, in jargon, T is categorical. Unfortunately (or fortunately depending on your point of view) for any theory with an infinite model, the Löwenheim-Skolem theorem shows this to be impossible: The theory has a model in every infinite power. In the mid-50's Łoś and Vaught discovered that if a theory T with no finite models is categorical in some infinite power α (all models with cardinality α are isomorphic) then T is complete. We will be dealing below with countable complete theories and will assume, unless stated to the contrary, that each theory has no finite models.


1989 ◽  
Vol 32 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Brailey Sims ◽  
David Yost

Given any subspace N of a Banach space X, there is a subspace M containing N and of the same density character as N, for which there exists a linear Hahn–Banach extension operator from M* to X*. This result was first proved by Heinrich and Mankiewicz [4, Proposition 3.4] using some of the deeper results of Model Theory. More precisely, they used the Banach space version of the Löwenheim–Skolem theorem due to Stern [11], which in turn relies on the Löwenheim–Skolem and Keisler–Shelah theorems from Model Theory. Previously Lindenstrauss [7], using a finite dimensional lemma and a compactness argument, obtained a version of this for reflexive spaces. We shall show that the same finite dimensional lemma leads directly to the general result, without any appeal to Model Theory.


Author(s):  
D. A. R. Wallace

SynopsisLet ℤ(G) be the integral group ring of the infinite dihedral groupG; the aim is to calculate Autℤ(G), the group of Z-linear automorphisms of ℤ(G). It is shown that Aut ℤ(G), the subgroup of Aut *ℤ(G) consisting of those automorphisms that preserve elementwise the centre of ℤ(G), is a normal subgroup of Aut *ℤ(G) of index 2 and that Aut*ℤ(G) may be embedded monomorphically intoM2(ℤ[t]), the ring of 2 × 2 matrices over a polynomial ring ℤ[t]From this embedding and by the Noether—Skolem Theorem it is shown that Inn (G), the group of inner automorphisms of ℤ(G) induced by the units of ℤ(G), is a normal subgroup of Aut*ℤ(G)/ such that Aut*ℤ(G)/Inn (G) is isomorphic to the Klein four-group.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


Sign in / Sign up

Export Citation Format

Share Document