Myasthenia Gravis

Author(s):  
Maximiliano A. Hawkes ◽  
Eelco F. M. Wijdicks

Myasthenia gravis (MG) is a well-characterized B-cell–mediated disease caused by autoantibodies against targets located in the postsynaptic end plate of the neuromuscular junction. Fluctuating weakness and fatigability are clinical hallmarks of this disease. MG can be divided into subgroups based on the age at onset, serum antibodies, and thymic tumor, and different clinical courses can be anticipated with each. This chapter describes general concepts about MG, focusing on the triage, work-up, and management of severe myasthenic exacerbation (crisis).

2021 ◽  
Vol 11 (8) ◽  
pp. 1035
Author(s):  
Maria Pia Giannoccaro ◽  
Patrizia Avoni ◽  
Rocco Liguori

The neuromuscular junction (NMJ) is the target of a variety of immune-mediated disorders, usually classified as presynaptic and postsynaptic, according to the site of the antigenic target and consequently of the neuromuscular transmission alteration. Although less common than the classical autoimmune postsynaptic myasthenia gravis, presynaptic disorders are important to recognize due to the frequent association with cancer. Lambert Eaton myasthenic syndrome is due to a presynaptic failure to release acetylcholine, caused by antibodies to the presynaptic voltage-gated calcium channels. Acquired neuromyotonia is a condition characterized by nerve hyperexcitability often due to the presence of antibodies against proteins associated with voltage-gated potassium channels. This review will focus on the recent developments in the autoimmune presynaptic disorders of the NMJ.


The Lancet ◽  
1975 ◽  
Vol 305 (7907) ◽  
pp. 607-609 ◽  
Author(s):  
AdamN Bender ◽  
W King Engel ◽  
StevenP Ringel ◽  
MathewP Daniels ◽  
Zvi Vogel

2013 ◽  
Vol 51 (08) ◽  
pp. 727-732 ◽  
Author(s):  
O. Al-Taie ◽  
C. Dietrich ◽  
D. Flieger ◽  
T. Katzenberger ◽  
W. Fischbach

2020 ◽  
Vol 11 ◽  
Author(s):  
Konstantinos Lazaridis ◽  
Socrates J. Tzartos

Myasthenia gravis (MG) is the most common autoimmune disorder affecting the neuromuscular junction, characterized by skeletal muscle weakness and fatigability. It is caused by autoantibodies targeting proteins of the neuromuscular junction; ~85% of MG patients have autoantibodies against the muscle acetylcholine receptor (AChR-MG), whereas about 5% of MG patients have autoantibodies against the muscle specific kinase (MuSK-MG). In the remaining about 10% of patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG). Since serological tests are relatively easy and non-invasive for disease diagnosis, the improvement of methods for the detection of known autoantibodies or the discovery of novel autoantibody specificities to diminish SN-MG and to facilitate differential diagnosis of similar diseases, is crucial. Radioimmunoprecipitation assays (RIPA) are the staple for MG antibody detection, but over the past years, using cell-based assays (CBAs) or improved highly sensitive RIPAs, it has been possible to detect autoantibodies in previously SN-MG patients. This led to the identification of more patients with antibodies to the classical antigens AChR and MuSK and to the third MG autoantigen, the low-density lipoprotein receptor-related protein 4 (LRP4), while antibodies against other extracellular or intracellular targets, such as agrin, Kv1.4 potassium channels, collagen Q, titin, the ryanodine receptor and cortactin have been found in some MG patients. Since the autoantigen targeted determines in part the clinical manifestations, prognosis and response to treatment, serological tests are not only indispensable for initial diagnosis, but also for monitoring treatment efficacy. Importantly, knowing the autoantibody profile of MG patients could allow for more efficient personalized therapeutic approaches. Significant progress has been made over the past years toward the development of antigen-specific therapies, targeting only the specific immune cells or autoantibodies involved in the autoimmune response. In this review, we will present the progress made toward the development of novel sensitive autoantibody detection assays, the identification of new MG autoantigens, and the implications for improved antigen-specific therapeutics. These advancements increase our understanding of MG pathology and improve patient quality of life by providing faster, more accurate diagnosis and better disease management.


1995 ◽  
Vol 132 (2) ◽  
pp. 97-104
Author(s):  
Naoko Tetsuo ◽  
Mitsuhiro Tsujihata ◽  
Akira Satoh ◽  
Toshiro Yoshimura ◽  
Tatsufumi Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document