Thin glomerular basement membrane nephropathy and other collagenopathies

Author(s):  
Laurence Heidet ◽  
Bertrand Knebelmann ◽  
Marie Claire Gubler

The discovery of a thin glomerular basement membrane in a renal biopsy without any other abnormalities can be explained in a number of ways. This could be an early biopsy in a patient with Alport syndrome, or it could be an individual who is a carrier for an Alport gene. These carriers are at increased risk of significant renal disease in their lifetime and some have proteinuria as well as haematuria, so they can no longer be equated with the historic label of benign familial haematuria. Some families with a thin glomerular basement membrane and haematuria inherited in an autosomal dominant fashion do not appear to have linkage to COL4 genes. Others have variable renal disease that has sometimes given rise to a label of mild but autosomal dominant Alport syndrome. This territory might also attract the label basement membrane 345 collagenopathy. Other uncommon conditions affecting the glomerular basement membrane include nail patella syndrome.

Nephron ◽  
2021 ◽  
pp. 1-7
Author(s):  
Nobuhisa Morimoto ◽  
Kiyotaka Nagahama ◽  
Takayasu Mori ◽  
Takuya Fujimaru ◽  
Yukio Tsuura ◽  
...  

We report a case of nail-patella syndrome (NPS) with unusual thinning of the glomerular basement membrane (GBM) associated with a novel heterozygous variant in the <i>LMX1B</i> gene. A 43-year-old female patient with a previous diagnosis of NPS, referred to our hospital for persistent proteinuria, underwent a renal biopsy, which revealed minor glomerular abnormalities. She underwent a second renal biopsy at the age of 56 owing to the presence of persistent proteinuria and decline in serum albumin, meeting the diagnostic criteria for nephrotic syndrome. Light microscopy demonstrated glomerulosclerosis and cystic dilatation of the renal tubules. Notably, electron microscopy revealed unusual thinning of the GBM, which is quite different from typical biopsy findings observed in patients with NPS, characterized by thick GBM with fibrillary material and electron-lucent structures. Comprehensive genetic screening for 168 known genes responsible for inherited kidney diseases using a next-generation sequencing panel identified a novel heterozygous in-frame deletion-insertion (c.723_729delinsCAAC: p.[Ser242_Lys243delinsAsn]) in exon 4 of the <i>LMX1B</i> gene, which may account for the disrupted GBM structure. Further studies are warranted to elucidate the complex genotype-phenotype relationship between <i>LMX1B</i> and proper GBM morphogenesis.


10.1038/84853 ◽  
2001 ◽  
Vol 27 (2) ◽  
pp. 205-208 ◽  
Author(s):  
Roy Morello ◽  
Guang Zhou ◽  
Sandra D. Dreyer ◽  
Scott J. Harvey ◽  
Yoshifumi Ninomiya ◽  
...  

2009 ◽  
Vol 133 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Mark Haas

Abstract Context.—Alport syndrome and thin glomerular basement membrane nephropathy (TBMN) are genetically heterogenous conditions characterized by structural abnormalities in the glomerular basement membrane and an initial presentation that usually involves hematuria. Approximately 40% of patients with TBMN are heterozygous carriers for autosomal recessive Alport syndrome, with mutations at the genetic locus encoding type IV collagen α3 [α3(IV)] and α4 chains. However, although the clinical course of TBMN is usually benign, Alport syndrome, particularly the X-linked form with mutations in the locus encoding the α5 chain of type IV collagen [α5(IV)], typically results in end-stage renal disease. Electron microscopy is essential to diagnosis of TBMN and Alport syndrome on renal biopsy, although electron microscopy alone is of limited value in distinguishing between TBMN, the heterozygous carrier state of X-linked Alport syndrome, autosomal recessive Alport syndrome, and even early stages of X-linked Alport syndrome. Objectives.—To review diagnostic pathologic features of each of the above conditions, emphasizing the need for immunohistology for α3(IV) and α5(IV) in addition to electron microscopy to resolve this differential diagnosis on a renal biopsy. The diagnostic value of immunofluorescence studies for α5(IV) on a skin biopsy in family members of patients with Alport syndrome also is reviewed. Data Sources.—Original and comprehensive review articles on the diagnosis of Alport syndrome and TBMN from the past 35 years, primarily the past 2 decades, and experience in our own renal pathology laboratory. Conclusions.—Although Alport syndrome variants and TBMN do not show characteristic light microscopic findings and can be difficult to differentiate from each other even by electron microscopy, using a combination of electron microscopy and immunohistology for α3(IV) and α5(IV) enables pathologists to definitively diagnose these disorders on renal biopsy in most cases.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
María del Mar Del Águila García ◽  
Antonio M Poyatos Andújar ◽  
Ana Isabel Morales García ◽  
Margarita Martínez Atienza ◽  
Susana García Linares ◽  
...  

Abstract Background and Aims Hereditary renal disease (HRD) is still underdiagnosed: although we know aspects related to autosomal dominant polycystic kidney disease (ADPKD), we know little about the incidence and prevalence of other entities such as Alport syndrome. Altogether, HRD can represent 15% of individuals undergoing renal replacement therapy (RRT) or could even be higher. The advancement of genetics at the healthcare level let to achieve accurate and early renal diagnoses, as well as the incorporation of genetic counseling to families, all of which will result in better management of the disease in its initial stages and the possibility of offering reproductive options that avoid transmission to offspring. Our objective is to know the performance offered by the implementation of the ERH panel through Next Generation Sequencing (NGS) in our healthcare area. Method Observational-descriptive study of 259 probands (141 men / 118 women), mean age of 46 years (30 pediatric / 123 over 50 years), with chronic kidney disease and suspected hereditary cause attended in the specialized consultation of our centers from October 2018 to October 2020. The DNA extracted from leukocytes obtained by venipuncture was processed with Nephropathies Solution version 3 panel (SOPHiA Genetics) according to the manufacturer's protocol. This panel covers the coding regions and splicing junctions of 44 HRD-related genes such as nephrotic syndromes, polycystic kidney diseases, Bartter syndromes, Alport syndrome, CAKUT or tubulopathies (table 1). The sequencing of the libraries was done in a MiSeq (Illumina Inc), the bioinformatic analysis of the data and annotation of variants was performed using the SOPHiA DDM 5.8.0.3 software, and the revision of variants by consulting the main databases (ClinVar, Exac, HGMD, NCBI, PKD Foundation, LOVD). Results The panel was informative (pathogenic or probably pathogenic) in 80/259 patients (31%) and 56/259 cases (21.66%) of variants of uncertain significance (VSI) were detected. Autosomal dominant polycystic kidney disease accounted for 76.2% of the variants identified (56.2% PKD1, 20% PKD2), following Alport syndrome with 15% and the alterations in the PKHD1 gene associated with renal polycystic disease in its recessive form with about 4% (Figure 1). We have also identified a case of autosomal dominant tubulointerstitial kidney disease associated with the UMOD gene that was not suspected until the genetic study was performed. We highlight that 45% (36/80) of the variants identified as responsible for the renal disease are not yet described. Overall, the most prevalent type of mutation is that which produces displacement in the reading frame or frameshift (Figure 2). Individually, frameshift is the most frequent alteration in PKD1, PKD2 and COL4A5, while for PKHD1, COL4A3 and COL4A4 it is missense. Conclusion Our NGS HRD panel a) offers an adequate diagnostic performance at the healthcare level, with definitive results in 1 out of 3 cases and has also allowed the performance of many carrier studies among family members b) is able of diagnosing the most frequent disease, ADPKD and Alport syndrome, as well as unresolved or poorly characterized cases, and c) opens the horizon for new diagnoses, all without increasing costs by outsourcing services. All this makes the genetic study of renal pathology a useful and efficient strategy. These results encourage us to enhance the resources in this area that we consider to be of strategic value.


2015 ◽  
Vol 84 (3) ◽  
pp. 201-204
Author(s):  
Jakub Żurawski

Initially, the thin glomerular basement membrane disease was called “a gentle and curable hemorrhagic nephritis”. The thin basement membrane disease has been finally characterized at the beginning of 1970s. This is when the connection between previously clinically described gentle microhematuria and significant thinning of glomerular basement membrane discovered during examination under the electron-microscope has been established. Ultimately, the disease has been described as a condition characterized with a diverse clinical course, usually mild, but sometimes progressive. It is a family conditioned disease, but it also appears sporadically and concerns at least 1% of the population. It has also been stated that it is one of the most frequent renal diseases, enumerated directly after changes caused by infections, hypertension and renal lithiasis. This particular disease is diagnosed more often than IgA nephropathy and Alport syndrome, which are also associated with haematuria or microhematuria.


Sign in / Sign up

Export Citation Format

Share Document