Ataxias

Author(s):  
Vikram G. Shakkottai

Autosomal recessive cerebellar ataxias are a group of inherited neurological disorders with progressive balance and gait difficulties. In these disorders, cerebellar ataxia is often accompanied by eye movement abnormalities and peripheral nervous system involvement. A unifying mechanism for disease pathogenesis that is common to all the recessive ataxias likely does not exist. Nevertheless, some pathophysiological pathways are common to several autosomal recessive cerebellar ataxias. Specific gene defects in each disorder are summarized in the chapter. The most common recessively inherited ataxias are Friedreich ataxia and Ataxia telangiectasia. A recessive ataxia must be considered for any individual with progressive cerebellar ataxia with onset less than 30 years. The treatment is primarily supportive, but some recessive ataxias have specific treatment.

2013 ◽  
Vol 71 (6) ◽  
pp. 345-348 ◽  
Author(s):  
Jose Luiz Pedroso ◽  
Pedro Braga-Neto ◽  
Irapua Ferreira Ricarte ◽  
Marcus Vinicius Cristino Albuquerque ◽  
Orlando Graziani Povoas Barsottini

Autosomal recessive cerebellar ataxias are a heterogeneous group of neurological disorders. In 1981, a neurological entity comprised by early onset progressive cerebellar ataxia, dysarthria, pyramidal weakness of the limbs and retained or increased upper limb reflexes and knee jerks was described. This disorder is known as early onset cerebellar ataxia with retained tendon reflexes. In this article, we aimed to call attention for the diagnosis of early onset cerebellar ataxia with retained tendon reflexes as the second most common cause of autosomal recessive cerebellar ataxias, after Friedreich ataxia, and also to perform a clinical spectrum study of this syndrome. In this data, 12 patients from different families met all clinical features for early onset cerebellar ataxia with retained tendon reflexes. Dysarthria and cerebellar atrophy were the most common features in our sample. It is uncertain, however, whether early onset cerebellar ataxia with retained tendon reflexes is a homogeneous disease or a group of phenotypically similar syndromes represented by different genetic entities. Further molecular studies are required to provide definitive answers to the questions that remain regarding early onset cerebellar ataxia with retained tendon reflexes.


2021 ◽  
Author(s):  
Xueping Chen ◽  
Xiaoqin Yuan ◽  
Qian-Qian Wei ◽  
RuWei Ou ◽  
Bei Cao ◽  
...  

Abstract Background: Autosomal recessive cerebellar ataxias (ARCA) are heterogeneous, complex, disabling neurodegenerative diseases characterized by autosomal recessive inheritance and cerebellar ataxia. Numerous mutations are described in several populations. However, in China, few data are available concerning ARCA. In this study, we aimed to identify ARCA-associated ataxia by targeted next-generation sequencing or whole-exome sequencing in a Chinese cohort, trying to determine clinical and genetic characteristics of Chinese patients with ARCA.Results: We identified 15 different mutations in 7 unrelated patients, of which 12 were novel, including seven missense mutations, three frameshift mutations, two splicing mutations, two nonsense mutations, and one inframe deletion mutation. The most frequent gene was ATM (3 patients), followed by SACS (2 patients), SYNE1 (2 patients), and SETX (1 patient). Specifically, 1 patient harbored mutations in both ATM and SYNE1. The phenotype was mainly cerebellar ataxia in all these cases. However, peripheral neuropathy, dystonia, oculomotor abnormalities, pyramidal tract dysfunction, cognitive impairment, and epilepsy were also revealed. Patients who harbored different gene mutations showed mutational heterogeneity. Conclusions: Our results indicate that ARCA-associated gene mutations are uncommon with additional clinical features in the Chinese population, and advanced sequencing is required to aid the diagnosis of undetermined cerebellar ataxia in Chinese patients.


Neuron ◽  
2019 ◽  
Vol 101 (4) ◽  
pp. 560-583 ◽  
Author(s):  
Matthis Synofzik ◽  
Hélène Puccio ◽  
Fanny Mochel ◽  
Ludger Schöls

2015 ◽  
Author(s):  
Susan Perlman

The inherited ataxias are disorders that cause progressive imbalance as a result of pathology in the cerebellum and its various connecting pathways. Autosomal recessive ataxias include Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia-telangiectasia, and autosomal recessive ataxia of Charlevoix-Saguenay, among others. A discussion of autosomal dominant ataxias covers spinocerebellar ataxias (SCA) types 1 through 14, dentatorubral pallidoluysian atrophy (DRPLA), and episodic ataxia (EA) syndromes. Clinical features, laboratory studies, differential diagnosis, and management of inherited ataxias are discussed. Tables describe both autosomal recessive ataxias and autosomal dominant ataxias (with known gene loci), childhood– or young adult–onset ataxias with ill-defined genetic abnormalities, phenotypic features that may indicate a specific genotype in the common autosomal dominant ataxias, and normal and expanded ranges of various repetitive nucleotide sequences in inherited ataxias. Figures include a diagrammatic representation of the type of repeat expansions associated with ataxias, aggregates of ataxin 3, a schematic of some of the proposed pathogenic mechanisms in the polyglutamine ataxias, and dystonia in a patient with SCA3. A sidebar offers selected Internet resources for information on ataxias. This chapter contains 64 references.


2015 ◽  
Vol 73 (10) ◽  
pp. 823-827 ◽  
Author(s):  
Wladimir Bocca Vieira de Rezende Pinto ◽  
José Luiz Pedroso ◽  
Paulo Victor Sgobbi de Souza ◽  
Marcus Vinícius Cristino de Albuquerque ◽  
Orlando Graziani Povoas Barsottini

Cerebellar ataxias represent a wide group of neurological diseases secondary to dysfunctions of cerebellum or its associated pathways, rarely coursing with acute-onset acquired etiologies and chronic non-progressive presentation. We evaluated patients with acquired non-progressive cerebellar ataxia that presented previous acute or subacute onset. Clinical and neuroimaging characterization of adult patients with acquired non-progressive ataxia were performed. Five patients were identified with the phenotype of acquired non-progressive ataxia. Most patients presented with a juvenile to adult-onset acute to subacute appendicular and truncal cerebellar ataxia with mild to moderate cerebellar or olivopontocerebellar atrophy. Establishing the etiology of the acute triggering events of such ataxias is complex. Non-progressive ataxia in adults must be distinguished from hereditary ataxias.


2017 ◽  
Vol 21 ◽  
pp. e136
Author(s):  
Gül Demet Kaya Ozcora ◽  
Nazlı Basak ◽  
Mehmet Canpolat ◽  
Hamit Acer ◽  
Sefer Kumandas

2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


Sign in / Sign up

Export Citation Format

Share Document