scholarly journals Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia

2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.

2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2019 ◽  
Author(s):  
Jiajun Chen ◽  
Yajuan Sun ◽  
Xiaoyang Liu ◽  
Jia Li

Abstract Background: Hereditary ataxia is a group of neurodegenerative diseases with progressive cerebellar ataxia of the gait and limbs as the main symptoms. The genetic patterns of the disease are diverse but it is mainly divided into autosomal dominant cerebellar ataxia (ADCA) and autosomal recessive cerebellar ataxia (ARCA), and about 45 pathogenic loci have been found in ADCA. The purpose of this study was to explore the genetic defect in a Chinese family with ADCA. Methods: A three-generation Chinese family with ADCA was enrolled in this study, Exome sequencing was conducted in four family members, including the proband, and verified by Sanger sequencing. Results: The rs779393130 mutation of the CACNA1C gene co-segregated with the ataxia phenotype in this family. The mutation was not detected in 50 unaffected controls. Conclusions: The rs779393130 mutation of CACNA1C may be associated with the phenotype of the disease. The CACNA1C gene encodes the Cav1.2 (alpha-1) subunit of an L-type calcium channel and this subunit may be related to the ADCA phenotype. These findings may have implications for family clinical monitoring and genetic counseling and may also help in understanding pathogenesis of this disease.


2011 ◽  
Vol 125 (2) ◽  
pp. 116-122 ◽  
Author(s):  
J. Koht ◽  
G. Stevanin ◽  
A. Durr ◽  
E. Mundwiller ◽  
A. Brice ◽  
...  

2021 ◽  
Author(s):  
Linwei Zhang ◽  
Xiangfei Zhang ◽  
Pu Lv ◽  
Dantao Peng

Abstract Background: Ataxia with Vitamin E deficiency (AVED) is a type of autosomal recessive cerebellar ataxia. The main clinical manifestation involves progressive cerebellar ataxia and movement disorders, α-tocopherol transfer protein(TTPA) gene mutations are responsible for this disease. Methods: A female patient from a consanguineous Chinese family underwent detailed physical and auxiliary examination. After exclusion of acquired causes of ataxia, Friedreich’s Ataxia, and common types of spinocerebellar ataxia, the patient was subjected to whole exome sequencing (WES) followed by confirmation of sequence variants using Sanger sequencing. Her asymptomatic parents and younger sister were genotyped for the variant. Results: This patient showed progressive cerebellar ataxia, dysarthria and dystonic tremor, her serum vitamin E concentration was remarkably decreased, brain MRI revealed no obvious cerebellum atrophy. Homozygous variant (c.473T>C, p.F158S) of TPPA gene were identified through WES. Bioinformatic analysis predicted F185S would be harmful to the protein function. After supplementation of vitamin E 400mg three times per day for two years, the patient’s symptom remained stabilization.Conclusions We identified an AVED patient caused by novel mutation in TTPA gene. Our findings widen the spectrum of TTPA gene mutations.


2017 ◽  
Vol 48 (S 01) ◽  
pp. S1-S45
Author(s):  
A. Enderli ◽  
B. Heinrich ◽  
P. Joset ◽  
J. De Geyter ◽  
J. Scheer ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 692-694 ◽  
Author(s):  
Daniel F. Wallace ◽  
Palle Pedersen ◽  
Jeannette L. Dixon ◽  
Peter Stephenson ◽  
Jeffrey W. Searle ◽  
...  

Abstract Hemochromatosis is a common disorder characterized by excess iron absorption and accumulation of iron in tissues. Usually hemochromatosis is inherited in an autosomal recessive pattern and is caused by mutations in the HFE gene. Less common non-HFE–related forms of hemochromatosis have been reported and are caused by mutations in the transferrin receptor 2 gene and in a gene localized to chromosome 1q. Autosomal dominant forms of hemochromatosis have also been described. Recently, 2 mutations in theferroportin1 gene, which encodes the iron transport protein ferroportin1, have been implicated in families with autosomal dominant hemochromatosis from the Netherlands and Italy. We report the finding of a novel mutation (V162del) in ferroportin1 in an Australian family with autosomal dominant hemochromatosis. We propose that this mutation disrupts the function of the ferroportin1 protein, leading to impaired iron homeostasis and iron overload.


Sign in / Sign up

Export Citation Format

Share Document