scholarly journals A Determination of the Diameter of Mars at the Mean Distance of the Earth from the Sun

1880 ◽  
Vol 41 (1) ◽  
pp. 42-43
Author(s):  
A. M. W. Downing
Keyword(s):  
The Sun ◽  
2013 ◽  
Vol 40 (1) ◽  
pp. 135-146
Author(s):  
Aleksandar Tomic

Newton's formula for gravity force gives greather force intensity for atraction of the Moon by the Sun than atraction by the Earth. However, central body in lunar (primary) orbit is the Earth. So appeared paradox which were ignored from competent specialist, because the most important problem, determination of lunar orbit, was inmediately solved sufficiently by mathematical ingeniosity - introducing the Sun as dominant body in the three body system by Delaunay, 1860. On this way the lunar orbit paradox were not canceled. Vujicic made a owerview of principles of mechanics in year 1998, in critical consideration. As an example for application of corrected procedure he was obtained gravity law in some different form, which gave possibility to cancel paradox of lunar orbit. The formula of Vujicic, with our small adaptation, content two type of acceleration - related to inertial mass and related to gravity mass. So appears carried information on the origin of the Moon, and paradox cancels.


Author(s):  
L. V. Morrison ◽  
F. R. Stephenson ◽  
C. Y. Hohenkerk ◽  
M. Zawilski

Historical reports of solar eclipses are added to our previous dataset (Stephenson et al. 2016 Proc. R. Soc. A 472 , 20160404 ( doi:10.1098/rspa.2016.0404 )) in order to refine our determination of centennial and longer-term changes since 720 BC in the rate of rotation of the Earth. The revised observed deceleration is −4.59 ± 0.08 × 10 −22  rad s −2 . By comparison the predicted tidal deceleration based on the conservation of angular momentum in the Sun–Earth–Moon system is −6.39 ± 0.03 × 10 −22  rad s −2 . These signify a mean accelerative component of +1.8 ± 0.1 × 10 −22  rad s −2 . There is also evidence of an oscillatory variation in the rate with a period of about 14 centuries.


In a paper printed in the Proceedings of the Royal Society,' No. 190, 1878 (vol. 28, pp. 2-35), I gave an account of some experiments undertaken in order to test the possibility of using the Common Balance in place of the Torsion Balance in the Cavendish Experiment. The success obtained seemed to justify the intention expressed in that paper to continue the work, using a large bullion balance, instead of the chemical balance with which the preliminary experiments were made. As I have had the honour to obtain grants from the Royal Society for the construction of the necessary apparatus, I have been able to carry out the experiment on the larger scale which appeared likely to render the method more satisfactory, and this paper contains an account of the results obtained.


1. Any estimate of the rigidity of the Earth must be based partly on some observations from which a deformation of the Earth’s surface can be inferred, and partly on some hypothesis as to the internal constitution of the Earth. The observations may be concerned with tides of long period, variations of the vertical, variations of latitude, and so on. The hypothesis must relate to the arrangement of the matter as regards density in different parts, and to the state of the parts in respect of solidity, compressibility, and so on. In the simplest hypothesis, the one on which Lord Kelvin’s well-known, estimate was based, the Earth is treated as absolutely incompressible and of uniform density and rigidity. This hypothesis was adopted to simplify the problem, not because it is a true one. No matter is absolutely incompressible, and, the Earth is not a body of uniform density. It cannot be held to be probable that it is a body of uniform rigidity. But when any part of the hypothesis, e. g ., the assumption of uniform density, is discarded, the estimate of rigidity is affected. Different estimates are obtained when different laws of density are assumed. Again, whatever hypothesis we adopt as regards the arrangement of the matter, so long as we consider the Earth to be absolutely incompressible and of uniform rigidity, different estimates of this rigidity are obtained by using observations of different phenomena. Variations of the vertical may give one value, variations of latitude a notably different value. It follows that “the rigidity of the Earth” is not a definite physical constant. But there are two determinate constant numbers related to the methods that have been used for obtaining estimates of the rigidity of the Earth. One of these numbers specifies the amount by which the surface of the Earth yields to forces of the type of the tide-generating attractions of the Sun and Moon. The other number specifies the amount by which the potential of the Earth is altered through the rearrangement of the matter within it when this matter is displaced by the deforming influence of the Sun and Moon. If we adopt the ordinarily-accepted theory of the Figure of the Earth, the so-called theory of “fluid equilibrium,” and if we make the very probable assumption that the physical constants of the matter within the Earth, such as the density or the incompressibility, are nearly uniform over any spherical surface having its centre at the Earth’s centre, we can determine both these numbers without introducing any additional hypothesis as to the law of density or the state of the matter. We shall find, in fact, that observations of variations of latitude lead to a determination of the number related to the inequality of potential, and that, when this number is known, observations of variations of the vertical lead to a determination of the number related to the inequality of figure. [ Note added , December 15, 1908.—This statement needs, perhaps, some additional qualification. It is assumed that, in calculating the two numbers from the two kinds of observations, we may adopt an equilibrium theory of the deformations produced in the Earth by the corresponding forces. If the constitution of the Earth is really such that an equilibrium theory of the effects produced in it by these forces is inadequate, we should expect a marked discordance of phase between the inequality of figure produced and the force producing it. Now Hecker’s observations, cited in § 6 below, show that, in the case of the semidiurnal term in the variation of the vertical due to the lunar deflexion of gravity, the agreement of phase is close. If, however, an equilibrium theory is adequate, as it appears to be, for the semidiurnal corporeal tide, a similar theory must be adequate for the corporeal tides of long period and for the variations of latitude.]


The author had pointed out, in a paper published in the Philosophical Transactions for 1828, on the corrections of the elements of Delambre’s Solar Tables, that the comparison of the corrections of the epochs of the sun and the sun’s perigee, given by the late observations, with the corrections given by the observations of the last century, appears to indicate the existence of some inequality not included in the arguments of those tables. As it was necessary, therefore, to seek for some inequality of long period, he commenced an examination of the mean motions of the planets, with the view of discovering one whose ratio to the mean motion of the earth could be expressed very nearly by a proportion of which the terms are small. The appearances of Venus are found to recur in very nearly the same order every eight years; some multiple, therefore, of the periodic time of Venus is nearly equal to eight years. It is easily seen that this multiple must be thirteen; and consequently eight times the mean motion of Venus is nearly equal to thirteen times the mean motion of the earth. The difference is about one 240th of the mean annual motion of the earth; and it implies the existence of an inequality of which the period is about 240 years. No term has yet been calculated whose period is so long with respect to the periodic time of the planets disturbed. The value of the principal term, calculated from the theory, was given by the author in a postscript to the paper above referred to. In the present memoir he gives an account of the method of calculation, and includes also other terms which are necessarily connected with the principal inequality. The first part treats of the perturbation of the earth’s longitude and radius victor; the second of the perturbation of the earth in latitude; and the third of the perturbations of Venus depending upon the same arguments.


1953 ◽  
Vol 2 (13) ◽  
pp. 213-218
Author(s):  
E. J. Öpik

AbstractA method of quantitative climatological analysis is developed by applying the principle of geometric similarity to the convective heat transport, which is assumed to vary with the 1.5 power of temperature difference. The method makes possible the calculation of the change in the mean annual, or seasonal temperature, produced by a variation in insolation, cloudiness, snow cover, etc.It is shown that the variations in the orbital elements of the earth cannot account for the phenomena of the ice ages; the chronology of the Quaternary, based on these variations, has no real foundation.Palaeoclimatic variations are most probably due to variations of solar luminosity. These can be traced to periodical re-adjustments in the interior of the sun, produced by an interplay between nuclear reactions and gas diffusion, repeating themselves after some 250 million years. Complications from the outer envelope of the sun lead to additional fluctuations of a shorter period, of the order of 100,000 years to be identified with the periodical advance and retreat of the glaciers during the Quaternary.Calculations of the variations of luminosity in a star of solar mass substantiate this hypothesis.


Sign in / Sign up

Export Citation Format

Share Document