scholarly journals Deep XMM–Newton observations of the most distant SPT-SZ galaxy cluster

2020 ◽  
Vol 496 (2) ◽  
pp. 1554-1564 ◽  
Author(s):  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
Matthew Bayliss ◽  
...  

ABSTRACT We present results from a 577 ks XMM–Newton observation of SPT-CL J0459–4947, the most distant cluster detected in the South Pole Telescope 2500 square degree (SPT-SZ) survey, and currently the most distant cluster discovered through its Sunyaev–Zel’dovich effect. The data confirm the cluster’s high redshift, z = 1.71 ± 0.02, in agreement with earlier, less precise optical/IR photometric estimates. From the gas density profile, we estimate a characteristic mass of $M_{500}=(1.8\pm 0.2)\times 10^{14}\, {\rm M}_{\odot }$; cluster emission is detected above the background to a radius of $\sim \!2.2\, r_{500}$, or approximately the virial radius. The intracluster gas is characterized by an emission-weighted average temperature of 7.2 ± 0.3 keV and metallicity with respect to Solar of $Z/\, Z_{\odot }=0.37\pm 0.08$. For the first time at such high redshift, this deep data set provides a measurement of metallicity outside the cluster centre; at radii $r\gt 0.3\, r_{500}$, we find $Z/\, Z_{\odot }=0.33\pm 0.17$ in good agreement with precise measurements at similar radii in the most nearby clusters, supporting an early enrichment scenario in which the bulk of the cluster gas is enriched to a universal metallicity prior to cluster formation, with little to no evolution thereafter. The leverage provided by the high redshift of this cluster tightens by a factor of 2 constraints on evolving metallicity models, when combined with previous measurements at lower redshifts.

2019 ◽  
Vol 629 ◽  
pp. A104 ◽  
Author(s):  
R. Gobat ◽  
E. Daddi ◽  
R. T. Coogan ◽  
A. M. C. Le Brun ◽  
F. Bournaud ◽  
...  

We present Atacama Large Millimetre Array and Atacama Compact Array observations of the Sunyaev-Zel’dovich effect in the z = 2 galaxy cluster Cl J1449+0856, an X-ray-detected progenitor of typical massive clusters in the present day Universe. While in a cleaned but otherwise untouched 92 GHz map of this cluster little to no negative signal is visible, careful subtraction of known sub-millimetre emitters in the uv plane reveals a decrement at 5σ significance. The total signal is −190 ± 36 μJy, with a peak offset by 5″–9″ (∼50 kpc) from both the X-ray centroid and the still-forming brightest cluster galaxy. A comparison of the recovered uv-amplitude profile of the decrement with different pressure models allows us to derive total mass constraints consistent with the ∼6 × 1013M⊙ estimated from X-ray data. Moreover, we find no strong evidence for a deviation of the pressure profile with respect to local galaxy clusters, although a slight tension at small-to-intermediate spatial scales suggests a flattened central profile, opposite to that seen in a cool core and possibly an AGN-related effect. This analysis of the lowest mass single SZ detection so far illustrates the importance of interferometers when observing the SZ effect in high-redshift clusters, the cores of which cannot be considered quiescent, such that careful subtraction of galaxy emission is necessary.


2013 ◽  
Vol 763 (2) ◽  
pp. 93 ◽  
Author(s):  
B. Stalder ◽  
J. Ruel ◽  
R. Šuhada ◽  
M. Brodwin ◽  
K. A. Aird ◽  
...  

2009 ◽  
Vol 5 (S262) ◽  
pp. 335-336
Author(s):  
Alexander Fritz ◽  
Inger Jørgensen ◽  
Ricardo P. Schiavon

AbstractWe present the Fundamental Plane (FP) of field early-type galaxies at 0.5 < z < 1.0. Our project is a continuation of our efforts to understand the formation and evolution of early-type galaxies in different environments. The target galaxies were selected from the comprehensive and homogeneous data set of the Gemini/HST Galaxy Cluster Project. The distant field early-type galaxies follow a steeper FP relation compared to the local FP. The change in the slope of the FP can be interpreted as a mass-dependent evolution. Similar results have been found for cluster early-type galaxies in high redshift galaxy clusters at 0.8 < z <1. Therefore, the slope change of the FP appears to be independent of the environment of the galaxies.


2010 ◽  
Vol 721 (1) ◽  
pp. 90-97 ◽  
Author(s):  
M. Brodwin ◽  
J. Ruel ◽  
P. A. R. Ade ◽  
K. A. Aird ◽  
K. Andersson ◽  
...  

2011 ◽  
Vol 738 (1) ◽  
pp. 48 ◽  
Author(s):  
K. Andersson ◽  
B. A. Benson ◽  
P. A. R. Ade ◽  
K. A. Aird ◽  
B. Armstrong ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3083-3094
Author(s):  
Francesco Calura ◽  
Eros Vanzella ◽  
Stefano Carniani ◽  
Roberto Gilli ◽  
Piero Rosati ◽  
...  

ABSTRACT We report on ALMA observations of D1, a system at z ∼ 6.15 with stellar mass $M_{*} \sim 10^7 \, \mathrm{M}_{\odot }$ containing globular cluster (GC) precursors, strongly magnified by the galaxy cluster MACS J0416.1-2403. Since the discovery of GC progenitors at high redshift, ours is the first attempt to probe directly the physical properties of their neutral gas through infrared observations. A careful analysis of our data set, performed with a suitable procedure designed to identify faint narrow lines and which can test various possible values for the unknown linewidth value, allowed us to identify a 4σ tentative detection of [C ii] emission with intrinsic luminosity $L_{\rm [C\, \rm {\small II}]}=(2.9 \pm 1.4)~10^6 \, {\it L}_{\odot }$, one of the lowest values ever detected at high redshift. This study offers a first insight on previously uncharted regions of the $L_{\rm [C\, \rm {\small II}]}{-}{\rm SFR}$ relation. Despite large uncertainties affecting our measure of the star formation rate, if taken at face value our estimate lies more than ∼1 dex below the values observed in local and high redshift systems. Our weak detection indicates a deficiency of [C ii] emission, possibly ascribed to various explanations, such as a low-density gas and/or a strong radiation field caused by intense stellar feedback, and a low metal content. From the non-detection in the continuum, we derive constraints on the dust mass, with 3σ upper limit values as low as ∼ a few 104 M⊙, consistent with the values measured in local metal-poor galaxies.


2012 ◽  
Vol 761 (2) ◽  
pp. 183 ◽  
Author(s):  
D. R. Semler ◽  
R. Šuhada ◽  
K. A. Aird ◽  
M. L. N. Ashby ◽  
M. Bautz ◽  
...  

2018 ◽  
Vol 481 (2) ◽  
pp. 2497-2506 ◽  
Author(s):  
M Roncarelli ◽  
M Baldi ◽  
F Villaescusa-Navarro

ABSTRACT The key to understand the nature of dark energy lies in our ability to probe the distant Universe. In this framework, the recent detection of the kinematic Sunyaev–Zel’dovich (kSZ) effect signature in the cosmic microwave background obtained with the South Pole Telescope (SPT) is extremely useful since this observable is sensitive to the high-redshift diffuse plasma. We analyse a set of cosmological hydrodynamical simulation with four different realizations of a Hu & Sawicki f(R) gravity model, parametrized by the values of $\overline{f}_{\rm R,0}$= (0, −10−6, −10−5, −10−4), to compute the properties of the kSZ effect due to the ionized Universe and how they depend on $\overline{f}_{\rm R,0}$ and on the redshift of reionization, zre. In the standard General Relativity limit ($\overline{f}_{\rm R,0}$= 0) we obtain an amplitude of the kSZ power spectrum of $\mathcal {D}^{\rm kSZ}_{3000}$$= 4.1\,$$\mu$K2 (zre= 8.8), close to the +1σ limit of the $\mathcal {D}^{\rm kSZ}_{3000}$$= (2.9\pm 1.3)\,$$\mu$K2 measurement by SPT. This corresponds to an upper limit on the kSZ contribute from patchy reionization of $\mathcal {D}^{\rm kSZ,patchy}_{3000}$$\lt 0.9\,$$\mu$K2 (95 per cent confidence level). Modified gravity boosts the kSZ signal by about 3, 12, and 50 per cent for $\overline{f}_{\rm R,0}$=(− 10−6, −10−5, −10−4), respectively, with almost no dependence on the angular scale. This means that with modified gravity the limits on patchy reionization shrink significantly: for $\overline{f}_{\rm R,0}$=−10−5 we obtain $\mathcal {D}^{\rm kSZ,patchy}_{3000}$$\lt 0.4\,$$\mu$K2. Finally, we provide an analytical formula for the scaling of the kSZ power spectrum with zre and $\overline{f}_{\rm R,0}$ at different multipoles: at ℓ = 3000 we obtain $\mathcal {D}^{\rm kSZ}_{3000}$ ∝ zre$^{0.24}\left(1+\sqrt{\left|\overline{f}_{\rm R,0}\right|}\right)^{41}$.


2020 ◽  
Vol 501 (2) ◽  
pp. 1663-1676
Author(s):  
R Barnett ◽  
S J Warren ◽  
N J G Cross ◽  
D J Mortlock ◽  
X Fan ◽  
...  

ABSTRACT We present the results of a new, deeper, and complete search for high-redshift 6.5 &lt; z &lt; 9.3 quasars over 977 deg2 of the VISTA Kilo-Degree Infrared Galaxy (VIKING) survey. This exploits a new list-driven data set providing photometry in all bands Z, Y, J, H, Ks, for all sources detected by VIKING in J. We use the Bayesian model comparison (BMC) selection method of Mortlock et al., producing a ranked list of just 21 candidates. The sources ranked 1, 2, 3, and 5 are the four known z &gt; 6.5 quasars in this field. Additional observations of the other 17 candidates, primarily DESI Legacy Survey photometry and ESO FORS2 spectroscopy, confirm that none is a quasar. This is the first complete sample from the VIKING survey, and we provide the computed selection function. We include a detailed comparison of the BMC method against two other selection methods: colour cuts and minimum-χ2 SED fitting. We find that: (i) BMC produces eight times fewer false positives than colour cuts, while also reaching 0.3 mag deeper, (ii) the minimum-χ2 SED-fitting method is extremely efficient but reaches 0.7 mag less deep than the BMC method, and selects only one of the four known quasars. We show that BMC candidates, rejected because their photometric SEDs have high χ2 values, include bright examples of galaxies with very strong [O iii] λλ4959,5007 emission in the Y band, identified in fainter surveys by Matsuoka et al. This is a potential contaminant population in Euclid searches for faint z &gt; 7 quasars, not previously accounted for, and that requires better characterization.


2020 ◽  
Vol 493 (3) ◽  
pp. 4315-4332 ◽  
Author(s):  
Xiangcheng Ma ◽  
Michael Y Grudić ◽  
Eliot Quataert ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
...  

ABSTRACT We report the formation of bound star clusters in a sample of high-resolution cosmological zoom-in simulations of z ≥ 5 galaxies from the Feedback In Realistic Environments project. We find that bound clusters preferentially form in high-pressure clouds with gas surface densities over $10^4\, \mathrm{ M}_{\odot }\, {\rm pc}^{-2}$, where the cloud-scale star formation efficiency is near unity and young stars born in these regions are gravitationally bound at birth. These high-pressure clouds are compressed by feedback-driven winds and/or collisions of smaller clouds/gas streams in highly gas-rich, turbulent environments. The newly formed clusters follow a power-law mass function of dN/dM ∼ M−2. The cluster formation efficiency is similar across galaxies with stellar masses of ∼107–$10^{10}\, \mathrm{ M}_{\odot }$ at z ≥ 5. The age spread of cluster stars is typically a few Myr and increases with cluster mass. The metallicity dispersion of cluster members is ∼0.08 dex in $\rm [Z/H]$ and does not depend on cluster mass significantly. Our findings support the scenario that present-day old globular clusters (GCs) were formed during relatively normal star formation in high-redshift galaxies. Simulations with a stricter/looser star formation model form a factor of a few more/fewer bound clusters per stellar mass formed, while the shape of the mass function is unchanged. Simulations with a lower local star formation efficiency form more stars in bound clusters. The simulated clusters are larger than observed GCs due to finite resolution. Our simulations are among the first cosmological simulations that form bound clusters self-consistently in a wide range of high-redshift galaxies.


Sign in / Sign up

Export Citation Format

Share Document