Characterizing the possible interior structures of the nearby Exoplanets Proxima Centauri b and Ross-128 b

2020 ◽  
Vol 500 (1) ◽  
pp. 333-354
Author(s):  
Mahesh Herath ◽  
Saraj Gunesekera ◽  
Chandana Jayaratne

ABSTRACT We developed a new numerical model to constrain the interior structure of rocky Exoplanets, and applied it to the nearby planets Proxima Centauri b and Ross-128 b. The recently measured elemental abundances of red dwarfs and Alpha Centauri were utilized to infer the bulk composition of each planet, and to measure their core mass fractions (CMFs). The results of our model predicted that the radius of Proxima b at its minimum mass may be 1.036 ± 0.040 R⊕, and if its mass is as high as 2 M⊕, 1.170 ± 0.040 R⊕. The radius of Ross-128 b at minimum mass may be 1.034 ± 0.040 R⊕, with its radius at an upper bound mass of 2 M⊕ being 1.150 ± 0.040 R⊕. Both planets may have thin mantles with similar conditions to Earth, but not convecting as vigorously. The CMFs might lie in the ranges of 20–59 per cent and 34–59 per cent for Proxima b and Ross-128 b, respectively, making it very likely they have massive iron cores. Their central temperatures may be high enough to partially melt the cores, and possibly generate magnetic fields. If they have magnetic fields at present, they are most likely to be multipolar in nature due to slow rotation speeds resulting from stellar tidal effects. The field strengths were predicted to have values of 0.06–0.23 G for Proxima b, and 0.07–0.14 G for Ross-128 b. If either planet contains more than 10 per cent of their mass in volatiles, magnetic fields would either be non-existent or very weak. The conditions of both planets may be hostile for habitability.

2020 ◽  
Vol 499 (1) ◽  
pp. 932-947
Author(s):  
Mykhaylo Plotnykov ◽  
Diana Valencia

ABSTRACT The composition of rocky exoplanets in the context of stars’ composition provides important constraints to formation theories. In this study, we select a sample of exoplanets with mass and radius measurements with an uncertainty $\lt 25{{\ \rm per\ cent}}$ and obtain their interior structure. We calculate compositional markers, ratios of iron to magnesium and silicon, as well as core mass fractions (CMFs) that fit the planetary parameters, and compare them to the stars. We find four key results that successful planet formation theories need to predict: (1) In a population sense, the composition of rocky planets spans a wider range than stars. The stars’ Fe/Si distribution is close to a Gaussian distribution $1.63^{+0.91}_{-0.85}$, while the planets’ distribution peaks at lower values and has a longer tail, $1.15^{+1.43}_{-0.76}$. It is easier to see the discrepancy in CMF space, where primordial stellar composition is $0.32^{+0.14}_{-0.12}$, while rocky planets follow a broader distribution $0.24^{+0.33}_{-0.18}$. (2) We introduce uncompressed density ($\overline{\rho _0}$ at reference pressure/temperature) as a metric to compare compositions. With this, we find what seems to be the maximum iron enrichment that rocky planets attain during formation ($\overline{\rho _0}\sim 6$ and CMF ∼0.8). (3) Highly irradiated planets exhibit a large range of compositions. If these planets are the result of atmospheric evaporation, iron enrichment and perhaps depletion must happen before gas dispersal. And, (4) We identify a group of highly irradiated planets that, if rocky, would be twofold depleted in Fe/Si with respect to the stars. Without a reliable theory for forming iron-depleted planets, these are interesting targets for follow-up.


Author(s):  
Z Keszthelyi ◽  
G Meynet ◽  
F Martins ◽  
A de Koter ◽  
A David-Uraz

Abstract τ Sco, a well-studied magnetic B-type star in the Uτer Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configuration which is unusual for a magnetic massive star. We employ the cmfgen radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ mesa and genec stellar evolution models accounting for the effects of surface magnetic fields. To reconcile τ Sco’s properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for τ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain τ Sco’s simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of τ Sco.


2002 ◽  
Vol 187 ◽  
pp. 245-251
Author(s):  
N. Ivanova ◽  
Ph. Podsiadlowski

AbstractWe study the slow merger of two massive stars inside a common envelope. The initial close binary system consists of a massive red supergiant and a main-sequence companion of a few solar masses. The merger product is a massive supergiant with an interior structure (core mass and composition profile) which is significantly different from that of a single supergiant that has evolved in isolation. Using a parameterized approach for the stream–core interaction, we modelled the merger phase and have identified three qualitatively different merger types: quiet, moderate and explosive mergers, where the differences are caused by the different response of the He burning shell. In the last two scenarios, the post-merger He abundance in the envelope is found to be substantially increased, but significant s-processing is mainly expected in the case of an explosive merger scenario. The subsequent evolution of the merger product up to the supernova stage is also discussed.


2014 ◽  
Vol 9 (S307) ◽  
pp. 391-392
Author(s):  
I. Petermann ◽  
N. Castro ◽  
N. Langer

AbstractBlue supergiants (BSGs) to the right the main sequence band in the HR diagram can not be reproduced by standard stellar evolution calculations. We investigate whether a reduced convective core mass due to strong internal magnetic fields during the main sequence might be able to recover this population of stars. We perform calculations with a reduced mass of the hydrogen burning convective core of stars in the mass range 3–30 M⊙ in a parametric way, which indeed lead to BSGs. It is expected that these BSGs would still show large scale magnetic fields in the order of 10 G.


2020 ◽  
Vol 638 ◽  
pp. A86 ◽  
Author(s):  
Asmita Bhandare ◽  
Rolf Kuiper ◽  
Thomas Henning ◽  
Christian Fendt ◽  
Mario Flock ◽  
...  

Context. Stars form as an end product of the gravitational collapse of cold, dense gas in magnetized molecular clouds. This fundamentally multi-scale scenario occurs via the formation of two quasi-hydrostatic Larson cores and involves complex physical processes, which require a robust, self-consistent numerical treatment. Aims. The primary aim of this study is to understand the formation and evolution of the second hydrostatic Larson core and the dependence of its properties on the initial cloud core mass. Methods. We used the PLUTO code to perform high-resolution, one- and two-dimensional radiation hydrodynamic (RHD) core collapse simulations. We include self-gravity and use a grey flux-limited diffusion approximation for the radiative transfer. Additionally, we use for the gas equation of state density- and temperature-dependent thermodynamic quantities (heat capacity, mean molecular weight, etc.) to account for effects such as dissociation of molecular hydrogen, ionisation of atomic hydrogen and helium, and molecular vibrations and rotations. Properties of the second core are investigated using one-dimensional studies spanning a wide range of initial cloud core masses from 0.5 M⊙ to 100 M⊙. Furthermore, we expand to two-dimensional (2D) collapse simulations for a selected few cases of 1 M⊙, 5 M⊙, 10 M⊙, and 20 M⊙. We follow the evolution of the second core for ≥100 years after its formation, for each of these non-rotating cases. Results. Our results indicate a dependence of several second core properties on the initial cloud core mass. Molecular cloud cores with a higher initial mass collapse faster to form bigger and more massive second cores. The high-mass second cores can accrete at a much faster rate of ≈10−2 M⊙ yr−1 compared to the low-mass second cores, which have accretion rates as low as 10−5 M⊙ yr−1. For the first time, owing to a resolution that has not been achieved before, our 2D non-rotating collapse studies indicate that convection is generated in the outer layers of the second core, which is formed due to the gravitational collapse of a 1 M⊙ cloud core. Additionally, we find large-scale oscillations of the second accretion shock front triggered by the standing accretion shock instability, which has not been seen before in early evolutionary stages of stars. We predict that the physics within the second core would not be significantly influenced by the effects of magnetic fields or an initial cloud rotation. Conclusions. In our 2D RHD simulations, we find convection being driven from the accretion shock towards the interior of the second Larson core. This supports an interesting possibility that dynamo-driven magnetic fields may be generated during the very early phases of low-mass star formation.


1993 ◽  
Vol 157 ◽  
pp. 333-337
Author(s):  
Karl Johan Donner ◽  
Axel Brandenburg ◽  
Magnus Thomasson

We discuss some aspects of the interrelationship between the dynamo problem for galaxies and their dynamics. First, we consider the generation of magnetic fields in the presence of fountain flows and galactic winds. Next, we discuss the distortion of a steady magnetic field by tidal effects and other transient spiral features. Finally, we give an expression for the amplitude of density waves generated by large-scale non-axisymmetric fields.


2010 ◽  
Vol 6 (S274) ◽  
pp. 389-392
Author(s):  
Hubert Siejkowski ◽  
Marian Soida ◽  
Katarzyna Otmianowska-Mazur ◽  
Michał Hanasz ◽  
Dominik J. Bomans

AbstractRadio observations show that magnetic fields are present in dwarf irregular galaxies (dIrr) and its strength is comparable to that found in spiral galaxies. Slow rotation, weak shear and shallow gravitational potential are the main features of a typical dIrr galaxy. These conditions of the interstellar medium in a dIrr galaxy seem to unfavourable for amplification of the magnetic field through the dynamo process. Cosmic-ray driven dynamo is one of the galactic dynamo model, which has been successfully tested in case of the spiral galaxies. We investigate this dynamo model in the ISM of a dIrr galaxy. We study its efficiency under the influence of slow rotation, weak shear and shallow gravitational potential. Additionally, the exploding supernovae are parametrised by the frequency of star formation and its modulation, to reproduce bursts and quiescent phases. We found that even slow galactic rotation with a low shearing rate amplifies the magnetic field, and that rapid rotation with a low value of the shear enhances the efficiency of the dynamo. Our simulations have shown that a high amount of magnetic energy leaves the simulation box becoming an efficient source of intergalactic magnetic fields.


2019 ◽  
Vol 491 (2) ◽  
pp. 2982-2999 ◽  
Author(s):  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Thomas Henning ◽  
Andrés Jordán ◽  
Caroline Dorn ◽  
...  

ABSTRACT We report the discovery of the 1.008-d, ultrashort period (USP) super-Earth HD 213885b (TOI-141b) orbiting the bright (V = 7.9) star HD 213885 (TOI-141, TIC 403224672), detected using photometry from the recently launched TESS mission. Using FEROS, HARPS, and CORALIE radial velocities, we measure a precise mass of 8.8 ± 0.6 M⊕ for this 1.74 ± 0.05 R⊕ exoplanet, which provides enough information to constrain its bulk composition – similar to Earth’s but enriched in iron. The radius, mass, and stellar irradiation of HD 213885b are, given our data, very similar to 55 Cancri e, making this exoplanet a good target to perform comparative exoplanetology of short period, highly irradiated super-Earths. Our precise radial velocities reveal an additional 4.78-d signal which we interpret as arising from a second, non-transiting planet in the system, HD 213885c, whose minimum mass of 19.9 ± 1.4 M⊕ makes it consistent with being a Neptune-mass exoplanet. The HD 213885 system is very interesting from the perspective of future atmospheric characterization, being the second brightest star to host an USP transiting super-Earth (with the brightest star being, in fact, 55 Cancri). Prospects for characterization with present and future observatories are discussed.


2019 ◽  
Vol 622 ◽  
pp. A195 ◽  
Author(s):  
P. J. Käpylä

Context. Differential rotation in stars is driven by the turbulent transport of angular momentum.Aims. Our aim is to measure and parameterize the non-diffusive contribution to the total (Reynolds plus Maxwell) turbulent stress, known as the Λ effect, and its quenching as a function of rotation and magnetic field.Methods. Simulations of homogeneous, anisotropically forced turbulence in fully periodic cubes are used to extract their associated turbulent Reynolds and Maxwell stresses. The forcing is set up such that the vertical velocity component dominates over the horizontal ones, as in turbulent stellar convection. This choice of the forcing defines the vertical direction. Additional preferred directions are introduced by the imposed rotation and magnetic field vectors. The angle between the rotation vector and the vertical direction is varied such that the latitude range from the north pole to the equator is covered. Magnetic fields are introduced by imposing a uniform large-scale field on the system. Turbulent transport coefficients pertaining to the Λ effect are obtained by fitting. The results are compared with analytic studies.Results. The numerical and analytic results agree qualitatively at slow rotation and low Reynolds numbers. This means that vertical (horizontal) transport is downward (equatorward). At rapid rotation the latitude dependence of the stress is more complex than predicted by theory. The existence of a significant meridional Λ effect is confirmed. Large-scale vorticity generation is found at rapid rotation when the Reynolds number exceeds a threshold value. The Λ effect is severely quenched by large-scale magnetic fields due to the tendency of the Reynolds and Maxwell stresses to cancel each other. Rotational (magnetic) quenching of Λ occurs at more rapid rotation (at lower field strength) in the simulations than in the analytic studies.Conclusions. The current results largely confirm the earlier theoretical results, and also offer new insights: the non-negligible meridional Λ effect possibly plays a role in the maintenance of meridional circulation in stars, and the appearance of large-scale vortices raises the question of their effect on the angular momentum transport in rapidly rotating stellar convective envelopes. The results regarding magnetic quenching are consistent with the strong decrease in differential rotation in recent semi-global simulations and highlight the importance of including magnetic effects in differential rotation models.


Sign in / Sign up

Export Citation Format

Share Document