scholarly journals Cloud fragmentation cascades and feedback: on reconciling an unfettered inertial range with a low star formation rate

2020 ◽  
Vol 493 (1) ◽  
pp. 815-820
Author(s):  
Eric G Blackman

ABSTRACT Molecular cloud complexes exhibit both (i) an unfettered Larson-type spectrum over much of their dynamic range, whilst (ii) still producing a much lower star formation rate than were this cascade to remain unfettered all the way down to star-forming scales. Here we explain the compatibility of these attributes with minimalist considerations of a mass-conserving fragmentation cascade, combined with estimates of stellar feedback. Of importance is that the amount of feedback needed to abate fragmentation and truncate the complex decreases with decreasing scale. The scale at which the feedback momentum matches the free-fall momentum marks a transition scale below most of the cascade is truncated and the molecular cloud complex dissipated. For a 106 M⊙ giant molecular cloud (GMC) complex starting with radius of ∼50 pc, the combined feedback from young stellar objects, supernovae, radiation, and stellar winds for a GMC cloud complex can truncate the cascade within an outer free-fall time but only after the cascade reaches parsec scales.

2020 ◽  
Author(s):  
Riwaj Pokhrel

Abstract One of the most important and well-established empirical results in astronomy is the so-called Kennicutt-Schmidt (KS) relation between the density of interstellar gas and the rate at which that gas forms stars. While a tight correlation between these quantities has long been measured at galactic scales, the difficulty of measuring star formation rates and gas densities over a large dynamic range at sub-galactic scales has thus far precluded a definitive determination of whether the same relationship holds within individual star-forming clouds. In this article we use a new, high-accuracy catalogue of young stellar objects from Spitzer combined with new, high-dynamic range maps of twelve nearby ($<$1.5 kpc) molecular clouds from Herschel to re-examine the KS relation within individual molecular clouds. We find a tight, linear correlation between clouds' star formation rate per unit area and their gas surface density normalised by the gas free-fall time. The measured relation extends over more than two orders of magnitude within each cloud, and is nearly identical in each of the twelve clouds, implying a constant star formation efficiency per free-fall time eff≈0.026$. The finding of a universal correlation within individual molecular clouds, including clouds that contain no massive stars or massive stellar feedback, favours models in which star formation is regulated by local processes such as turbulence or protostellar outflows, and disfavours models in which star formation is regulated primarily by galaxy properties or supernova feedback on galactic scales.


2018 ◽  
Vol 14 (S345) ◽  
pp. 27-33
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Birgit Hasenberger

AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.


2020 ◽  
Vol 494 (1) ◽  
pp. 624-641 ◽  
Author(s):  
Mark R Krumholz ◽  
Christopher F McKee

ABSTRACT Gravitationally bound clusters that survive gas removal represent an unusual mode of star formation in the Milky Way and similar spiral galaxies. While forming, they can be distinguished observationally from unbound star formation by their high densities, virialized velocity structures, and star formation histories that accelerate towards the present, but extend multiple free-fall times into the past. In this paper, we examine several proposed scenarios for how such structures might form and evolve, and carry out a Bayesian analysis to test these models against observed distributions of protostellar age, counts of young stellar objects relative to gas, and the overall star formation rate of the Milky Way. We show that models in which the acceleration of star formation is due either to a large-scale collapse or a time-dependent increase in star formation efficiency are unable to satisfy the combined set of observational constraints. In contrast, models in which clusters form in a ‘conveyor belt’ mode where gas accretion and star formation occur simultaneously, but the star formation rate per free-fall time is low, can match the observations.


2012 ◽  
Vol 8 (S292) ◽  
pp. 307-310 ◽  
Author(s):  
C.-H. R. Chen ◽  
R. Indebetouw ◽  
E. Muller ◽  
M. Messineo ◽  
K. M. Menten ◽  
...  

AbstractThe relationship between star formation rate (SFR) and the gas surface density (Σgas) is one of the most critical links between star formation and galaxy evolution. The observed SFR- Σgas relation, the “Schmidt-Kennicutt (S-K) law”, is tight when properties are averaged over kpc, but breaks down at the scale of giant molecular clouds (GMCs). To understand the physics governing the variations at GMC scales and the tight correlation at kpc scales, spatially and temporally resolved data covering a wide range of linear scale are needed. We have used the Spitzer surveys of the Large Magellanic Cloud and Magellanic Bridge to identify massive young stellar objects (YSOs), estimate “instantaneous” SFRs, and compare them to the S-K relation. These instantaneous SFRs are further compared to that estimated from integrated Hα and 24 μm luminosities to examine how SFRs vary on 10 Myr timescales. We have also used SINFONI near-IR integral field spectra of two Galactic mini-starbursts W31 and W43 to determine their underlying massive stellar content, estimate the SFRs, and compare to the S-K relation. To investigate evironmental effects on star formation, we have used complete YSO samples in the LMC and the Bridge to estimate global star formation efficiencies (SFE) in these two systems.


2017 ◽  
Vol 605 ◽  
pp. A35 ◽  
Author(s):  
P. Palmeirim ◽  
A. Zavagno ◽  
D. Elia ◽  
T. J. T. Moore ◽  
A. Whitworth ◽  
...  

We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of ~70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be ~15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii ) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion (<2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions (<1 Myr), as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles.


2006 ◽  
Vol 2 (S237) ◽  
pp. 378-383
Author(s):  
Mark R. Krumholz

AbstractOne of the outstanding puzzles about star formation is why it proceeds so slowly. Giant molecular clouds convert only a few percent of their gas into stars per free-fall time, and recent observations show that this low star formation rate is essentially constant over a range of scales from individual cluster-forming molecular clumps in the Milky Way to entire starburst galaxies. This striking result is perhaps the most basic fact that any theory of star formation must explain. I argue that a model in which star formation occurs in virialized structures at a rate regulated by supersonic turbulence can explain this observation. The turbulence in turn is driven by star formation feedback, which injects energy to offset radiation from isothermal shocks and keeps star-forming structures from wandering too far from virial balance. This model is able to reproduce observational results covering a wide range of scales, from the formation times of young clusters to the extragalactic IR-HCN correlation, and makes additional quantitative predictions that will be testable in the next few years.


2009 ◽  
Vol 5 (H15) ◽  
pp. 799-799
Author(s):  
Thomas P. Robitaille ◽  
Barbara A. Whitney

AbstractWe present preliminary results of a study to determine the star formation rate of the Galaxy using a census of young stellar objects (YSOs) in the Spitzer/GLIMPSE and MIPSGAL surveys, which cover nearly 300 square degrees of the Galactic mid-plane. We find a value of 1.7 M⊙/yr, consistent with independent estimates.


2020 ◽  
Vol 634 ◽  
pp. A26 ◽  
Author(s):  
L. S. Pilyugin ◽  
E. K. Grebel ◽  
I. A. Zinchenko ◽  
J. M. Vílchez ◽  
F. Sakhibov ◽  
...  

We derive the photometric, kinematic, and abundance characteristics of 18 star-forming MaNGA galaxies with fairly regular velocity fields and surface brightness distributions and with a large offset between the measured position angles of the major kinematic and photometric axes, ΔPA ≳ 20°. The aim is to examine if there is any other distinctive characteristic common to these galaxies. We found morphological signs of interaction in some (in 11 out of 18) but not in all galaxies. The observed velocity fields show a large variety; the maps of the isovelocities vary from an hourglass-like appearance to a set of straight lines. The position angles of the major kinematic axes of the stellar and gas rotations are close to each other. The values of the central oxygen abundance, radial abundance gradient, and star formation rate are distributed within the intervals defined by galaxies with small (no) ΔPA of similar mass. Thus, we do not find any specific characteristic common to all galaxies with large ΔPA. Instead, the properties of these galaxies are similar to those of galaxies with small (no) ΔPA. This suggests that either the reason responsible for the large ΔPA does not influence other characteristics or the galaxies with large ΔPA do not share a common origin, they can, instead, originate through different channels.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


Sign in / Sign up

Export Citation Format

Share Document