scholarly journals Spatial distribution of star formation related to ionized regions throughout the inner Galactic plane

2017 ◽  
Vol 605 ◽  
pp. A35 ◽  
Author(s):  
P. Palmeirim ◽  
A. Zavagno ◽  
D. Elia ◽  
T. J. T. Moore ◽  
A. Whitworth ◽  
...  

We present a comprehensive statistical analysis of star-forming objects located in the vicinities of 1360 bubble structures throughout the Galactic plane and their local environments. The compilation of ~70 000 star-forming sources, found in the proximity of the ionized (Hii) regions and detected in both Hi-GAL and GLIMPSE surveys, provided a broad overview of the different evolutionary stages of star-formation in bubbles, from prestellar objects to more evolved young stellar objects (YSOs). Surface density maps of star-forming objects clearly reveal an evolutionary trend where more evolved star-forming objects (Class II YSO candidates) are found spatially located near the center, while younger star-forming objects are found at the edge of the bubbles. We derived dynamic ages for a subsample of 182 H ii regions for which kinematic distances and radio continuum flux measurements were available. We detect approximately 80% more star-forming sources per unit area in the direction of bubbles than in the surrounding fields. We estimate the clump formation efficiency (CFE) of Hi-GAL clumps in the direction of the shell of the bubbles to be ~15%, around twice the value of the CFE in fields that are not affected by feedback effects. We find that the higher values of CFE are mostly due to the higher CFE of protostellar clumps, in particular in younger bubbles, whose density of the bubble shells is higher. We argue that the formation rate from prestellar to protostellar phase is probably higher during the early stages of the (H ii ) bubble expansion. Furthermore, we also find a higher fraction of massive YSOs (MYSOs) in bubbles at the early stages of expansion (<2 Myr) than older bubbles. Evaluation of the fragmentation time inside the shell of bubbles advocates the preexistence of clumps in the medium before the bubble expansion in order to explain the formation of MYSOs in the youngest H ii regions (<1 Myr), as supported by numerical simulations. Approximately 23% of the Hi-GAL clumps are found located in the direction of a bubble, with 15% for prestellar clumps and 41% for protostellar clumps. We argue that the high fraction of protostellar clumps may be due to the acceleration of the star-formation process cause by the feedback of the (Hii) bubbles.

2018 ◽  
Vol 14 (S345) ◽  
pp. 27-33
Author(s):  
Josefa E. Großschedl ◽  
João Alves ◽  
Stefan Meingast ◽  
Birgit Hasenberger

AbstractThe giant molecular cloud Orion A is the closest massive star-forming region to earth (d ∼ 400 pc). It contains the rich Orion Nebula Cluster (ONC) in the North, and low-mass star-forming regions (L1641, L1647) to the South. To get a better understanding of the differences in star formation activity, we perform an analysis of the gas mass distribution and star formation rate across the cloud. We find that the gas is roughly uniformly distributed, while, oddly, the ONC region produced about a factor of ten more stars compared to the rest of the cloud. For a better interpretation of this phenomenon, we use Gaia DR2 parallaxes, to analyse distances of young stellar objects, using them as proxy for cloud distances. We find that the ONC region indeed lies at about 400 pc while the low-mass star-forming parts are inclined about 70∘ from the plane of the sky reaching until ∼470 pc. With this we estimate that Orion A is an about 90 pc long filamentary cloud (about twice as long as previously assumed), with its “Head” (the ONC region) being “bent” and oriented towards the galactic mid-plane. This striking new view allows us to perform a more robust analysis of this important star-forming region in the future.


2020 ◽  
Vol 493 (1) ◽  
pp. 815-820
Author(s):  
Eric G Blackman

ABSTRACT Molecular cloud complexes exhibit both (i) an unfettered Larson-type spectrum over much of their dynamic range, whilst (ii) still producing a much lower star formation rate than were this cascade to remain unfettered all the way down to star-forming scales. Here we explain the compatibility of these attributes with minimalist considerations of a mass-conserving fragmentation cascade, combined with estimates of stellar feedback. Of importance is that the amount of feedback needed to abate fragmentation and truncate the complex decreases with decreasing scale. The scale at which the feedback momentum matches the free-fall momentum marks a transition scale below most of the cascade is truncated and the molecular cloud complex dissipated. For a 106 M⊙ giant molecular cloud (GMC) complex starting with radius of ∼50 pc, the combined feedback from young stellar objects, supernovae, radiation, and stellar winds for a GMC cloud complex can truncate the cascade within an outer free-fall time but only after the cascade reaches parsec scales.


2012 ◽  
Vol 8 (S292) ◽  
pp. 307-310 ◽  
Author(s):  
C.-H. R. Chen ◽  
R. Indebetouw ◽  
E. Muller ◽  
M. Messineo ◽  
K. M. Menten ◽  
...  

AbstractThe relationship between star formation rate (SFR) and the gas surface density (Σgas) is one of the most critical links between star formation and galaxy evolution. The observed SFR- Σgas relation, the “Schmidt-Kennicutt (S-K) law”, is tight when properties are averaged over kpc, but breaks down at the scale of giant molecular clouds (GMCs). To understand the physics governing the variations at GMC scales and the tight correlation at kpc scales, spatially and temporally resolved data covering a wide range of linear scale are needed. We have used the Spitzer surveys of the Large Magellanic Cloud and Magellanic Bridge to identify massive young stellar objects (YSOs), estimate “instantaneous” SFRs, and compare them to the S-K relation. These instantaneous SFRs are further compared to that estimated from integrated Hα and 24 μm luminosities to examine how SFRs vary on 10 Myr timescales. We have also used SINFONI near-IR integral field spectra of two Galactic mini-starbursts W31 and W43 to determine their underlying massive stellar content, estimate the SFRs, and compare to the S-K relation. To investigate evironmental effects on star formation, we have used complete YSO samples in the LMC and the Bridge to estimate global star formation efficiencies (SFE) in these two systems.


2019 ◽  
Vol 625 ◽  
pp. A114 ◽  
Author(s):  
E. F. Jiménez-Andrade ◽  
B. Magnelli ◽  
A. Karim ◽  
G. Zamorani ◽  
M. Bondi ◽  
...  

To better constrain the physical mechanisms driving star formation, we present the first systematic study of the radio continuum size evolution of star-forming galaxies (SFGs) over the redshift range 0.35 <  z <  2.25. We use the VLA COSMOS 3 GHz map (noise rms = 2.3 μJy beam−1, θbeam = 0.75 arcsec) to construct a mass-complete sample of 3184 radio-selected SFGs that reside on and above the main sequence (MS) of SFGs. We constrain the overall extent of star formation activity in galaxies by applying a 2D Gaussian model to their radio continuum emission. Extensive Monte Carlo simulations are used to validate the robustness of our measurements and characterize the selection function. We find no clear dependence between the radio size and stellar mass, M⋆, of SFGs with 10.5 ≲ log(M⋆/M⊙) ≲ 11.5. Our analysis suggests that MS galaxies are preferentially extended, while SFGs above the MS are always compact. The median effective radius of SFGs on (above) the MS of Reff = 1.5 ± 0.2 (1.0 ± 0.2) kpc remains nearly constant with cosmic time; a parametrization of the form Reff ∝ (1 + z)α yields a shallow slope of only α = −0.26 ± 0.08 (0.12 ± 0.14) for SFGs on (above) the MS. The size of the stellar component of galaxies is larger than the extent of the radio continuum emission by a factor ∼2 (1.3) at z = 0.5 (2), indicating star formation is enhanced at small radii. The galactic-averaged star formation rate surface density (ΣSFR) scales with the distance to the MS, except for a fraction of MS galaxies (≲10%) that harbor starburst-like ΣSFR. These “hidden” starbursts might have experienced a compaction phase due to disk instability and/or a merger-driven burst of star formation, which may or may not significantly offset a galaxy from the MS. We thus propose to use ΣSFR and distance to the MS in conjunction to better identify the galaxy population undergoing a starbursting phase.


Author(s):  
James E. Upjohn ◽  
Michael J. I. Brown ◽  
Andrew M. Hopkins ◽  
Nicolas J. Bonne

AbstractWe measure the cosmic star formation history out to z = 1.3 using a sample of 918 radio-selected star-forming galaxies within the 2-deg2 COSMOS field. To increase our sample size, we combine 1.4-GHz flux densities from the VLA-COSMOS catalogue with flux densities measured from the VLA-COSMOS radio continuum image at the positions of I &lt; 26.5 galaxies, enabling us to detect 1.4-GHz sources as faint as 40 μJy. We find that radio measurements of the cosmic star formation history are highly dependent on sample completeness and models used to extrapolate the faint end of the radio luminosity function. For our preferred model of the luminosity function, we find the star formation rate density increases from 0.017 M⊙ yr−1 Mpc−3 at z ∼ 0.225 to 0.092 M⊙ yr−1 Mpc−3 at z ∼ 1.1, which agrees to within 40% of recent UV, IR and 3-GHz measurements of the cosmic star formation history.


2020 ◽  
Vol 496 (3) ◽  
pp. 3128-3141 ◽  
Author(s):  
A Rodríguez-Kamenetzky ◽  
C Carrasco-González ◽  
J M Torrelles ◽  
W H T Vlemmings ◽  
L F Rodríguez ◽  
...  

ABSTRACT The massive star-forming region W75N (B) is thought to host a cluster of massive protostars (VLA 1, VLA 2, and VLA 3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4–48 GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch Very Large Array (VLA) data and Atacama Large Millimeter Array (ALMA) archive data at 1.3 mm wavelength. We find that VLA 1 is driving a thermal radio jet at scales of ≈0.1 arcsec (≈130 au), but also shows signs of an incipient hypercompact H ii region at scales of ≲1 arcsec (≲1300 au). VLA 3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock exciting the radio continuum sources Bc and VLA 4 (obscured Herbig–Haro objects), which show proper motions moving outward from VLA 3 at velocities of ≈112–118 km s−1. We have also detected three new weak radio continuum sources, two of them associated with millimetre continuum cores observed with ALMA, suggesting that these two sources are also embedded young stellar objects in this massive star-forming region.


2018 ◽  
Vol 617 ◽  
pp. A67 ◽  
Author(s):  
M. R. Samal ◽  
L. Deharveng ◽  
A. Zavagno ◽  
L. D. Anderson ◽  
S. Molinari ◽  
...  

Aims. We aim to identify bipolar Galactic H II regions and to understand their parental cloud structures, morphologies, evolution, and impact on the formation of new generations of stars. Methods. We use the Spitzer-GLIMPSE, Spitzer-MIPSGAL, and Herschel-Hi-GAL surveys to identify bipolar H II regions and to examine their morphologies. We search for their exciting star(s) using NIR data from the 2MASS, UKIDSS, and VISTA surveys. Massive molecular clumps are detected near these bipolar nebulae, and we estimate their temperatures, column densities, masses, and densities. We locate Class 0/I young stellar objects (YSOs) in their vicinities using the Spitzer and Herschel-PACS emission. Results. Numerical simulations suggest bipolar H II regions form and evolve in a two-dimensional flat- or sheet-like molecular cloud. We identified 16 bipolar nebulae in a zone of the Galactic plane between ℓ ± 60° and |b| < 1°. This small number, when compared with the 1377 bubble H II regions in the same area, suggests that most H II regions form and evolve in a three-dimensional medium. We present the catalogue of the 16 bipolar nebulae and a detailed investigation for six of these. Our results suggest that these regions formed in dense and flat structures that contain filaments. We find that bipolar H II regions have massive clumps in their surroundings. The most compact and massive clumps are always located at the waist of the bipolar nebula, adjacent to the ionised gas. These massive clumps are dense, with a mean density in the range of 105 cm−3 to several 106 cm−3 in their centres. Luminous Class 0/I sources of several thousand solar luminosities, many of which have associated maser emission, are embedded inside these clumps. We suggest that most, if not all, massive 0/I YSO formation has probably been triggered by the expansion of the central bipolar nebula, but the processes involved are still unknown. Modelling of such nebula is needed to understand the star formation processes at play.


1999 ◽  
Vol 51 (6) ◽  
pp. 791-818 ◽  
Author(s):  
Reiko Yamaguchi ◽  
Hiro Saito ◽  
Norikazu Mizuno ◽  
Yoshihiro Mine ◽  
Akira Mizuno ◽  
...  

Abstract We have carried out extensive 13CO(J = 1−0) observations toward 23 southern H II regions associated with bright-rimmed clouds. In total, 95 molecular clouds have been identified to be associated with the H II regions. Among the 95, 57 clouds \ are found to be associated with 204 IRAS point sources which are candidates for young stellar objects. There is a significant increase of star-formation efficiency on the side facing to the H II regions; the luminosity-to-mass ratio, defined as the ratio of the stellar luminosity to the molecular cloud mass, is higher by an order of magnitude on the near side of the H II regions than that on the far side. This indicates that molecular gas facing to the H II regions is more actively forming massive s\ tars whose luminosity is ≳103L⊙. In addition, the number density of the IRAS point sources increases by a factor of 2 on the near side of the H II regions compared with on the far side. These results strongly suggest that the active formation of massive stars on the near side of the H II regions is due to the effects of the H II regions, such as the compression of molecular material by the ionization/shock fronts. For the whole Galaxy, we estimate that the present star-formation rate under such effects is at least 0.2−0.4 M⊙ yr-1, corresponding to a few 10% by mass.


2006 ◽  
Vol 2 (S237) ◽  
pp. 217-221
Author(s):  
Miriam Rengel ◽  
Klaus Hodapp ◽  
Jochen Eislöffel

AbstractAccording to a triggered star formation scenario (e.g. Martin-Pintado & Cernicharo 1987) outflows powered by young stellar objects shape the molecular clouds, can dig cavities, and trigger new star formation. NGC 1333 is an active site of low- and intermediate star formation in Perseus and is a suggested site of self-regulated star formation (Norman & Silk 1980). Therefore it is a suitable target for a study of triggered star formation (e.g. Sandell & Knee 2001, SK1). On the other hand, continuum sub-mm observations of star forming regions can detect dust thermal emission of embedded sources (which drive outflows), and further detailed structures.Within the framework of our wide-field mapping of star formation regions in the Perseus and Orion molecular clouds using SCUBA at 850 and 450 μm, we mapped NCG 1333 with an area of around 14′× 21′. The maps show more structure than the previous maps of the region observed in sub-mm. We have unveiled the known embedded SK 1 source (in the dust shell of the SSV 13 ridge) and detailed structure of the region, among some other young protostars.In agreement with the SK 1 observations, our map of the region shows lumpy filaments and shells/cavities that seem to be created by outflows. The measured mass of SK 1 (~0.07 M) is much less than its virial mass (~0.2-1 M). Our observations support the idea of SK 1 as an event triggered by outflow-driven shells in NGC 1333 (induced by an increase in gas pressure and density due to radiation pressure from the stellar winds that have presumably created the dust shell). This kind of evidences provides a more thorough understanding of the star formation regulation processes.


Sign in / Sign up

Export Citation Format

Share Document