scholarly journals Stellar velocity dispersion and dynamical mass of the ultra diffuse galaxy NGC 5846_UDG1 from the keck cosmic web imager

2020 ◽  
Vol 500 (1) ◽  
pp. 1279-1284
Author(s):  
Duncan A Forbes ◽  
Jonah S Gannon ◽  
Aaron J Romanowsky ◽  
Adebusola Alabi ◽  
Jean P Brodie ◽  
...  

ABSTRACT The ultra diffuse galaxy in the NGC 5846 group (NGC 5846_UDG1) was shown to have a large number of globular cluster (GC) candidates from deep imaging as part of the VEGAS survey. Recently, Müller et al. published a velocity dispersion, based on a dozen of its GCs. Within their quoted uncertainties, the resulting dynamical mass allowed for either a dark matter free or a dark-matter-dominated galaxy. Here, we present spectra from KCWI that reconfirms membership of the NGC 5846 group and reveals a stellar velocity dispersion for UDG1 of σGC = 17 ± 2 km s−1. Our dynamical mass, with a reduced uncertainty, indicates a very high contribution of dark matter within the effective radius. We also derive an enclosed mass from the locations and motions of the GCs using the tracer mass estimator, finding a similar mass inferred from our stellar velocity dispersion. We find no evidence that the galaxy is rotating and is thus likely pressure supported. The number of confirmed GCs, and the total number inferred for the system (∼45), suggests a total halo mass of ∼2 × 1011 M⊙. A cored mass profile is favoured when compared to our dynamical mass. Given its stellar mass of 1.1 × 108 M⊙, NGC 5846_UDG1 appears to be an ultra diffuse galaxy with a dwarf-like stellar mass and an overly massive halo.

2007 ◽  
Vol 3 (S245) ◽  
pp. 257-258 ◽  
Author(s):  
Bassem M. Sabra ◽  
Maya Abi Akl ◽  
Gilbert Chahine

AbstractWe explore the connection between the central supermassive blackholes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of their host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has direct measurements of its SMBH mass, MBH, circular velocity, vc, and velocity dispersion, σ. We present a direct observational MBH − vc relation.


2020 ◽  
Vol 641 ◽  
pp. A143
Author(s):  
Alessandro Sonnenfeld

Context. The stellar density profile of a galaxy is typically summarised with two numbers: the total stellar mass and half-light radius. The total mass of a galaxy, however, is not a well-defined quantity, due to the finite depth of photometric observations and the arbitrariness of the distinction between galaxy and diffuse intra-group light. This limits our ability to make accurate comparisons between models and observations. Aims. I wish to provide a more robust two-parameter description of the stellar density distribution of elliptical galaxies, in terms of quantities that can be measured unambiguously. Methods. I propose using the stellar mass enclosed within 10 kpc in projection, M*,10, and the mass-weighted stellar density slope within the same aperture, Γ*,10, for this purpose. I measured the distribution in M*,10 and Γ*,10 of a sample of elliptical galaxies from the Sloan Digital Sky Survey and the Galaxy And Mass Assembly survey, using photometry from the Hyper Suprime-Cam survey. I measured, at fixed (M*,10, Γ*,10), what the spread is in the galaxy surface brightness profile and central stellar velocity dispersion within the sample. As a first application, I then compared the observed M*,10 − Γ*,10 relation of elliptical galaxies with that of similarly selected galaxies in the EAGLE REFERENCE simulation. Results. The pair of values of (M*,10, Γ*,10) can be used to predict the stellar density profile in the inner 10 kpc of a galaxy with better than 20% accuracy. Similarly, M*,10 and Γ*,10 can be combined to obtain a proxy for stellar velocity dispersion that is at least as good as the stellar mass fundamental plane. The average stellar density slope of EAGLE elliptical galaxies matches that of observed ones at M*,10 = 1011 M⊙ well, but the EAGLE M*,10 − Γ*,10 relation is shallower and has a larger intrinsic scatter compared to observations. Conclusions. This new parameterisation of the stellar density profile of massive elliptical galaxies provides a more robust way of comparing results from different photometric surveys and from hydrodynamical simulations, with respect to a description based on total stellar mass and half-light radius.


2018 ◽  
Vol 618 ◽  
pp. A147 ◽  
Author(s):  
M. Zoccali ◽  
E. Valenti ◽  
O. A. Gonzalez

Context.Recent spectroscopic surveys of the Galactic bulge have unambiguously shown that the bulge contains two main components, which are best separated by their iron content, but also differ in spatial distribution, kinematics, and abundance ratios. The so-called metal poor component peaks at [Fe/H] ∼ −0.4, while the metal rich component peaks at [Fe/H] ∼ +0.3. The total metallicity distribution function is therefore bimodal with a dip at [Fe/H] ∼ 0. The relative fraction of the two components changes significantly across the bulge area. Aims. We provide, for the first time, the fractional contribution of the metal poor and metal rich stars to the stellar mass budget of the Galactic bulge and its variation across the bulge area. Methods. This result follows from the combination of the stellar mass profile obtained empirically, by our group, from VISTA Variables in the Vía Láctea data, with the relative fraction of metal poor and metal rich stars, across the bulge area, derived from the GIRAFFE Inner Bulge spectroscopic Survey. Results. We find that metal poor stars make up 48% of the total stellar mass of the bulge, within the region |l| < 10, |b| < 9.5 and that the remaining 52% are made up of metal rich stars. The latter dominate the mass budget at intermediate latitudes |b| ∼ 4, but become marginal in the outer bulge (|b| > 8). The metal poor component is more axisymmetric than the metal rich component, and it is at least comparable and possibly slightly dominant in the inner few degrees. As a result, the metal poor component, which does not follow the main bar, is not marginal in terms of the total mass budget as previously thought, and this new observational evidence must be included in bulge models. While the trend of the total radial velocity dispersion follows the total stellar mass, when we examine the velocity dispersion of each component individually, we find that metal poor stars have higher velocity dispersion where they make up a smaller fraction of the stellar mass, and vice versa. This is due to the kinematical and spatial distribution of the two metallicity components being significantly different, as already discussed in the literature.


1987 ◽  
Vol 117 ◽  
pp. 153-160 ◽  
Author(s):  
M. Aaronson ◽  
E. Olszewski

We report the cumulative results of an on-going effort to measure the stellar velocity dispersion in two nearby dwarf spheroidal galaxies. Radial velocities having an accuracy ≲ 2 km s−1 have now been secured for ten stars in Ursa Minor and eleven stars in Draco (including 16 K giants and 5 C types). Most objects have been observed at two or more epochs. Stars having non-variable velocities yield in both dwarfs a large (∼ 10 km s−1) dispersion. These results cannot be explained by atmospheric motions, and circumstantial evidence suggests that the effects of undetected binaries are also not likely to be important. Instead, it seems that both spheroidals contain a substantial dark matter component, which therefore must be “cold” in form.


1996 ◽  
Vol 171 ◽  
pp. 403-403
Author(s):  
B. Lanzoni ◽  
L. Ciotti ◽  
A. Renzini

We explore several structural and dynamical effects on the projected velocity dispersion as possible causes of the fundamental plane (FP) tilt of elliptical galaxies (Ciotti, Lanzoni & Renzini, 1995). Specifically, we determine the size of the systematic trend along the FP in the orbital radial anisotropy, in the dark matter (DM) content and distribution relative to the bright matter, and in the shape of the light profile that would be needed to produce the tilt, under the assumption of a constant stellar mass to light ratio. Spherical, non rotating, two-components models are constructed, where the light profiles resemble the R1/4 law. For these we can exclude orbital anisotropy as the origin of the tilt, while a systematic increase in the DM content and/or concentration may formally produce it. Also a suitable variation of the light profile can produce the desired effect, and there may be some observational hints supporting this possibility. However, fine tuning is always required in order to reproduce the tilt, while preserving the tightness of the galaxies distribution about the FP.


2014 ◽  
Vol 11 (S308) ◽  
pp. 187-192
Author(s):  
O. Nasonova ◽  
I. Karachentsev ◽  
V. Karachentseva

AbstractBootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of RA = 13h0...18h.5 and Dec = .5°... + 10° with radial velocities VLG < 2000 km/s to clarify its structure and kinematics. In this region, 161 galaxies have individual distance estimates. We use these data to draw the Hubble relation for galaxy groups, pairs as well as the field galaxies, and to examine the galaxy distribution on peculiar velocities. Our analysis exposes the known Virgo-centric infall at RA < 14h and some signs of outflow from the Local Void at RA > 17h. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC 5846. The Bootes filament contains the total stellar mass of 2.7 ×1012M⊙ and the total virial mass of 9.07×1013M⊙, having the average density of dark matter to be Ωm = 0.09, i.e. a factor three lower than the global cosmic value.


Author(s):  
Keoikantse Moses Mogotsi ◽  
Alessandro B Romeo

Abstract The stellar velocity dispersion, σ, is a quantity of crucial importance for spiral galaxies, where it enters fundamental dynamical processes such as gravitational instability and disc heating. Here we analyse a sample of 34 nearby spirals from the Calar Alto Legacy Integral Field Area (CALIFA) spectroscopic survey, deproject the line-of-sight σ to σR and present reliable radial profiles of σR as well as accurate measurements of ⟨σR⟩, the radial average of σR over one effective (half-light) radius. We show that there is a trend for σR to increase with decreasing R, that ⟨σR⟩ correlates with stellar mass (M⋆) and tested correlations with other galaxy properties. The most significant and strongest correlation is the one with M⋆: $\langle \sigma _{R}\rangle \propto M_{\star }^{0.5}$. This tight scaling relation is applicable to spiral galaxies of type Sa–Sd and stellar mass M⋆ ≈ 109.5–1011.5 M⊙. Simple models that relate σR to the stellar surface density and disc scale length roughly reproduce that scaling, but overestimate ⟨σR⟩ significantly.


Sign in / Sign up

Export Citation Format

Share Document