scholarly journals On the pumping of the CS(v=0) masers in W51 e2e

Author(s):  
D J van der Walt ◽  
A Ginsburg ◽  
C Goddi

Abstract We present the results of numerically solving the rate equations for the first 31 rotational states of CS in the ground vibrational state to determine the conditions under which the J = 1 − 0, J = 2 − 1 and J = 3 − 2 transitions are inverted to produce maser emission. The essence of our results is that the CS(v=0) masers are collisionally pumped and that, depending on the spectral energy distribution, dust emission can suppress the masers. Apart from the J = 1 − 0 and J = 2 − 1 masers the calculations also show that the J = 3 − 2 transition can be inverted to produce maser emission. It is found that beaming is necessary to explain the observed brightness temperatures of the recently discovered CS masers in W51 e2e. The model calculations suggest that a CS abundance of a few times 10−5 and CS(v=0) column densities of the order 1016 cm−2 are required for these masers. The rarity of the CS masers in high mass star forming regions might be the result of a required high CS abundance as well as due to attenuation of the maser emission inside as well as outside of the hot core.

2014 ◽  
Vol 1 (1) ◽  
pp. 103-107
Author(s):  
Paolo Persi ◽  
Mauricio Tapia

We have studied a number of selected high mass star forming regions, including high resolution near-infrared broad- and narrow-band imaging, Herschel (70, 160, 250, 350 and 500<em> μ</em>m) and Spitzer (3.6, 4.5, 5.8 and 8.0 m) images. The preliminary results of one of this region, IRAS 19388+2357(MOL110) are discussed. In this region a dense core has been detected in the far-infrared, and a young stellar cluster has been found around this core. Combining near-IR data with Spitzer and Herschel photometry we have derived the spectral energy distribution of Mol110. Finally comparing our H<sub>2</sub> and Kc narrow-band images, we have found an H<sub>2</sub> jet in this region.


2017 ◽  
Vol 604 ◽  
pp. A52 ◽  
Author(s):  
A. Bracco ◽  
P. Palmeirim ◽  
Ph. André ◽  
R. Adam ◽  
P. Ade ◽  
...  

The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (i.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ ~ 2) to protostellar cores (βRJ ~ 1) and the Class II object (βRJ ~ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain radial β profiles. We find systematic spatial variations of β in the protostellar cores that are not observed in the prestellar core. While in the former case β decreases toward the center (with β varying between 1 and 2), in the latter it remains constant (β = 2.4 ± 0.3). Moreover, the dust emissivity index appears anticorrelated with the dust temperature. We discuss the implication of these results in terms of dust grain evolution between pre- and protostellar cores.


2019 ◽  
Vol 626 ◽  
pp. A126 ◽  
Author(s):  
C. Agliozzo ◽  
A. Mehner ◽  
N. M. Phillips ◽  
P. Leto ◽  
J. H. Groh ◽  
...  

The luminous blue variable (LBV) RMC 143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC 143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. Both the extinction map and the SED are consistent with a dusty massive nebula with a dust mass of 0.055 ± 0.018 M⊙ (assuming κ850 = 1.7 cm2 g−1). To date, RMC 143 has the most dusty LBV nebula observed in the Magellanic Clouds. We have also re-examined the LBV classification of RMC 143 based on VLT/X-shooter spectra obtained in 2015/16 and a review of the publication record. The radiative transfer code CMFGEN is used to derive its fundamental stellar parameters. We find an effective temperature of ∼8500 K, luminosity of log(L/L⊙) = 5.32, and a relatively high mass-loss rate of 1.0 × 10−5 M⊙ yr−1. The luminosity is much lower than previously thought, which implies that the current stellar mass of ∼8 M⊙ is comparable to its nebular mass of ∼5.5 M⊙ (from an assumed gas-to-dust ratio of 100), suggesting that the star has lost a large fraction of its initial mass in past LBV eruptions or binary interactions. While the star may have been hotter in the past, it is currently not hot enough to ionize its circumstellar nebula. We propose that the nebula is ionized externally by the hot stars in the 30 Doradus star-forming region.


2019 ◽  
Vol 628 ◽  
pp. A98
Author(s):  
J. Brand ◽  
J. G. A. Wouterloot ◽  
C. Codella ◽  
F. Massi ◽  
A. Giannetti

Context. This paper relates to low-mass star formation in globules, and the interaction of newly-formed stars with their environment. We follow up on the results of our earlier observations of this globule. Aims. Our aim is to study the gas- and dust environment of the young stellar object (YSO) in globule CB88 230, the large-scale molecular outflow triggered by the jet driven by the YSO, and their interaction. Methods. We carried out submillimetre continuum and multi-line molecular observations with several single-dish facilities, mapping the core of the globule and the large-scale outflow associated with the YSO. Results. Dust continuum and molecular line maps (of 12CO, C18O, CS, CH3OH) show a flattened (axes ratio 1.5−1.7), asymmetric core with a full width at half maximum (FWHM)-diameter of 0.16−0.21 pc. Line profiles of 12CO, 13CO(2–1, 3–2), and CS(2–1) show self-absorption near the YSO; the absorption dip is at a slightly (~0.3 km s−1) redder velocity than that of the quiescent gas, possibly indicating infall of cooler envelope gas. The mass of the core, determined from C18O(1–0) observations, is about 8 M⊙, while the virial mass is in the range 5−8M⊙, depending on the assumed density distribution. We detect a slight velocity gradient (~0.98 km s−1 pc−1), though rotational energy is negligible with respect to gravitational and turbulent energy of the core. A fit to the spectral energy distribution of the core gives a dust temperature Td ≈ 18 K and a gas mass of ca. 2 M⊙ (assuming a gas-to-dust ratio of 100). More careful modelling of the sub-mm emission (not dominated by the relatively hot central regions) yields M ≈ 8M⊙. From the molecular line observations we derive gas temperatures of 10−20 K. A Bayesian analysis of the emission of selected molecules observed towards the YSO, yields Tkin ≈ 21.4 K (68% credibility interval 14.5−35.5 K) and volume density n(H2) ≈ 4.6 × 105 cm−3 (8.3 × 104−9.1 × 105 cm−3). We have mapped the well-collimated large-scale outflow in 12CO(3–2). The outflow has a dynamical age of a few 104 yr, and contains little mass (a few 10−2 M⊙). A misalignment between the axis of this large-scale outflow and that of the hot jet close to the YSO indicates that the outflow direction may be changing with time.


2019 ◽  
Vol 15 (S341) ◽  
pp. 211-215
Author(s):  
Y. Tamura ◽  
K. Mawatari ◽  
T. Hashimoto ◽  
A. K. Inoue ◽  
E. Zackrissonm ◽  
...  

AbstractWe present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M⊙. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60M⊙yr−1), and moderately metal-polluted (Z ≍ 0.2Z⊙) stellar component with a stellar mass of 3 × 108M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.


2012 ◽  
Vol 8 (S287) ◽  
pp. 286-287 ◽  
Author(s):  
Miranda K. Dunham ◽  

AbstractWe present preliminary results of a search for 22 GHz water masers toward 1400 star-forming regions seen in the Bolocam Galactic Plane Survey (BGPS) using the Green Bank Telescope (GBT). The BGPS is a blind survey of the Northern Galactic plane in 1.1 mm thermal dust emission that has cataloged star-forming regions at all evolutionary stages. Further information is required to determine the stage of each BGPS source. Since water masers are produced by outflows from low and high-mass star forming regions, their presence is a key component of determining whether the BGPS sources are forming stars and which evolutionary stage they are in. We present preliminary detection statistics, basic properties of the water masers, and correlations with physical properties determined from the 1.1 mm emission and ammonia observations obtained concurrently with the water masers on the GBT.


2006 ◽  
Vol 460 (3) ◽  
pp. 721-731 ◽  
Author(s):  
O. Miettinen ◽  
J. Harju ◽  
L. K. Haikala ◽  
C. Pomrén

2018 ◽  
Vol 615 ◽  
pp. A146 ◽  
Author(s):  
W. J. Pearson ◽  
L. Wang ◽  
P. D. Hurley ◽  
K. Małek ◽  
V. Buat ◽  
...  

Context. Deep far-infrared (FIR) cosmological surveys are known to be affected by source confusion, causing issues when examining the main sequence (MS) of star forming galaxies. In the past this has typically been partially tackled by the use of stacking. However, stacking only provides the average properties of the objects in the stack. Aims. This work aims to trace the MS over 0.2 ≤ z < 6.0 using the latest de-blended Herschel photometry, which reaches ≈10 times deeper than the 5σ confusion limit in SPIRE. This provides more reliable star formation rates (SFRs), especially for the fainter galaxies, and hence a more reliable MS. Methods. We built a pipeline that uses the spectral energy distribution (SED) modelling and fitting tool CIGALE to generate flux density priors in the Herschel SPIRE bands. These priors were then fed into the de-blending tool XID+ to extract flux densities from the SPIRE maps. In the final step, multi-wavelength data were combined with the extracted SPIRE flux densities to constrain SEDs and provide stellar mass (M⋆) and SFRs. These M⋆ and SFRs were then used to populate the SFR-M⋆ plane over 0.2 ≤ z < 6.0. Results. No significant evidence of a high-mass turn-over was found; the best fit is thus a simple two-parameter power law of the form log(SFR) = α[log(M⋆) − 10.5] + β. The normalisation of the power law increases with redshift, rapidly at z ≲ 1.8, from 0.58 ± 0.09 at z ≈ 0.37 to 1.31 ± 0.08 at z ≈ 1.8. The slope is also found to increase with redshift, perhaps with an excess around 1.8 ≤ z < 2.9. Conclusions. The increasing slope indicates that galaxies become more self-similar as redshift increases. This implies that the specific SFR of high-mass galaxies increases with redshift, from 0.2 to 6.0, becoming closer to that of low-mass galaxies. The excess in the slope at 1.8 ≤ z < 2.9, if present, coincides with the peak of the cosmic star formation history.


2012 ◽  
Vol 8 (S287) ◽  
pp. 171-175 ◽  
Author(s):  
Sandra Etoka ◽  
Malcolm D. Gray ◽  
Gary A. Fuller

AbstractW51 Main/South is one of the brightest and richest high-mass star-forming regions (SFR) in the complex W51. It is known to host many ultra-compact HII (UCHII) regions thought to be the site of massive young stellar objects. Maser emission from various species is also found in the region. We have performed MERLIN astrometric observations of excited-OH maser emission at 6.035 GHz and Class II methanol maser emission at 6.668 GHz towards W51 to investigate the relationship between the maser emission and the compact continuum sources in this SFR complex. Here we present the astrometric distributions of both 6.668-GHz methanol and 6.035-GHz excited-OH maser emission in the W51 Main/South region. The location of maser emission in the two lines is compared with that of previously published OH groundstate emission. The interesting coherent velocity and spatial structure observed in the methanol maser distribution as well as the relationship of the masers to infall or outflow in the region are discussed. It appears that the masers are excited by multiple objects potentially at different stages of evolution.


Author(s):  
D. Elia

Far-infrared and submillimetre surveys as the Herschel Galactic Plane Infrared Survey (Hi-GAL) represent an irreplaceable knowledge base about early phases of star formation, permitting statistical analysis based on thousands of Galaxy-wide distributed sources. Those with a regular spectral energy distribution in the Herschel wavelength range 70-500 μm span a variety of evolutionary stages, from quiescent to star forming clumps and, within the latter class, from mid-infrared dark clumps to sources appearing very bright also at shorter wavelengths (e.g. Spitzer 24 μm). A fraction of these clumps hosts the formation of high mass stars, which are expected to reach the zero-age main sequence and to develop a HII region in their surroundings while they are still embedded in their parental large-scale dusty envelope. This paper aims at selecting and studying in detail a robust sample of Hi-GAL clumps supposed to be candidate to host a HII region in their interior. They are expected to be the most evolved sources in the Hi-GAL catalogue. The Galactic locations and the physical properties (temperature, mass, bolometric luminosity and temperature, and surface density) of these sources are discussed here. The large number (1199) of selected sources constitutes an important starting point for planning further interferometric programs, aimed at resolving possible cores hosting a young high-mass star.


Sign in / Sign up

Export Citation Format

Share Document