scholarly journals Overconstrained models of time delay lenses redux: how the angular tail wags the radial dog

2021 ◽  
Vol 501 (4) ◽  
pp. 5021-5028
Author(s):  
C S Kochanek

Abstract The two properties of the radial mass distribution of a gravitational lens that are well constrained by Einstein rings are the Einstein radius RE and ξ2 = REα″(RE)/(1 − κE), where α″(RE) and κE are the second derivative of the deflection profile and the convergence at RE, respectively. However, if there is a tight mathematical relationship between the radial mass profile and the angular structure, as is true of ellipsoids, an Einstein ring can appear to strongly distinguish radial mass distributions with the same ξ2. This problem is beautifully illustrated by the ellipsoidal models in Millon et al. When using Einstein rings to constrain the radial mass distribution, the angular structure of the models must contain all the degrees of freedom expected in nature (e.g. external shear, different ellipticities for the stars and the dark matter, modest deviations from elliptical structure, modest twists of the axes, modest ellipticity gradients, etc.) that work to decouple the radial and angular structures of the gravity. Models of Einstein rings with too few angular degrees of freedom will lead to strongly biased likelihood distinctions between radial mass distributions and very precise but inaccurate estimates of H0 based on gravitational lens time delays.

2018 ◽  
Vol 617 ◽  
pp. A140 ◽  
Author(s):  
Olivier Wertz ◽  
Bastian Orthen ◽  
Peter Schneider

The central ambition of the modern time delay cosmography consists in determining the Hubble constant H0 with a competitive precision. However, the tension with H0 obtained from the Planck satellite for a spatially flat ΛCDM cosmology suggests that systematic errors may have been underestimated. The most critical of these errors probably comes from the degeneracy existing between lens models that was first formalized by the well-known mass-sheet transformation (MST). In this paper, we assess to what extent the source position transformation (SPT), a more general invariance transformation which contains the MST as a special case, may affect the time delays predicted by a model. To this aim, we have used pySPT, a new open-source python package fully dedicated to the SPT that we present in a companion paper. For axisymmetric lenses, we find that the time delay ratios between a model and its SPT-modified counterpart simply scale like the corresponding source position ratios, Δtˆ/Δt ≈ βˆ/β, regardless of the mass profile and the isotropic SPT. Similar behavior (almost) holds for nonaxisymmetric lenses in the double image regime and for opposite image pairs in the quadruple image regime. In the latter regime, we also confirm that the time delay ratios are not conserved. In addition to the MST effects, the SPT-modified time delays deviate in general no more than a few percent for particular image pairs, suggesting that its impact on time delay cosmography seems not be as crucial as initially suspected. We also reflected upon the relevance of the SPT validity criterion and present arguments suggesting that it should be reconsidered. Even though a new validity criterion would affect the time delays in a different way, we expect from numerical simulations that our conclusions will remain unchanged.


2020 ◽  
Vol 493 (2) ◽  
pp. 1725-1735 ◽  
Author(s):  
C S Kochanek

ABSTRACT It is well known that measurements of H0 from gravitational lens time delays scale as H0 ∝ 1 − κE, where κE is the mean convergence at the Einstein radius RE but that all available lens data other than the delays provide no direct constraints on κE. The properties of the radial mass distribution constrained by lens data are RE and the dimensionless quantity ξ = REα″(RE)/(1 − κE), where α″(RE) is the second derivative of the deflection profile at RE. Lens models with too few degrees of freedom, like power-law models with densities ρ ∝ r−n, have a one-to-one correspondence between ξ and κE (for a power-law model, ξ = 2(n − 2) and κE = (3 − n)/2 = (2 − ξ)/4). This means that highly constrained lens models with few parameters quickly lead to very precise but inaccurate estimates of κE and hence H0. Based on experiments with a broad range of plausible dark matter halo models, it is unlikely that any current estimates of H0 from gravitational lens time delays are more accurate than ${\sim} 10{{\ \rm per\ cent}}$, regardless of the reported precision.


2009 ◽  
Vol 6 (2) ◽  
pp. 394-400
Author(s):  
Baghdad Science Journal

This paper including a gravitational lens time delays study for a general family of lensing potentials, the popular singular isothermal elliptical potential (SIEP), and singular isothermal elliptical density distribution (SIED) but allows general angular structure. At first section there is an introduction for the selected observations from the gravitationally lensed systems. Then section two shows that the time delays for singular isothermal elliptical potential (SIEP) and singular isothermal elliptical density distributions (SIED) have a remarkably simple and elegant form, and that the result for Hubble constant estimations actually holds for a general family of potentials by combining the analytic results with data for the time delay and by using the models of distances.


1989 ◽  
Vol 54 (7) ◽  
pp. 1821-1829
Author(s):  
Bedřich Porsch ◽  
Simon King ◽  
Lars-Olof Sundelöf

The differences between the QELSS and classical diffusion coefficient of a polydisperse polymer resulting from distinct definitions of experimentally accessible average values are calculated for two assumed specific forms of molar mass distributions. Predicted deviations are compared with the experiment using NBS 706 standard polystyrene. QELSS Dz of this sample relates within 2-4% to the classical diffusion coefficient, if the Schulz-Zimm molar mass distribution is assumed to be valid. In general, differences between the height-area and QELSS diffusion coefficient of about 20% may be found for Mw/Mn ~ 2, and this value may increase above 35%, if strongly tailing molar mass distribution pertains to the sample.


2009 ◽  
Vol 501 (2) ◽  
pp. 475-484 ◽  
Author(s):  
H. Tu ◽  
R. Gavazzi ◽  
M. Limousin ◽  
R. Cabanac ◽  
P. J. Marshall ◽  
...  

1998 ◽  
Vol 13 (02) ◽  
pp. 83-86 ◽  
Author(s):  
MARCO LOMBARDI

In this letter we provide a new proof of a general theorem on gravitational lenses, first proven by Burke (1981) for the special case of thin lenses. The theorem states that a transparent gravitational lens with non-singular mass distribution produces an odd number of images of a point source. Our general proof shows that the topological degree finds natural and interesting applications in the theory of gravitational lenses.


1994 ◽  
Vol 50 (8) ◽  
pp. 4895-4902 ◽  
Author(s):  
Joshua A. Frieman ◽  
Diego D. Harari ◽  
Gabriela C. Surpi

Author(s):  
Pawan Joshi ◽  
Utkarsh Kumar ◽  
Sukanta Panda

Nonlocal gravity models are constructed to explain the current acceleration of the universe. These models are inspired by the infrared correction appearing in Einstein–Hilbert action. Here, we develop the Hamiltonian formalism of a nonlocal model by considering only terms to quadratic order in Riemann tensor, Ricci tensor and Ricci scalar. We show how to count degrees of freedom using Hamiltonian formalism including Ricci tensor and Ricci scalar terms. In this model, we have also worked out with a choice of a nonlocal action which has only two degrees of freedom equivalent to GR. Finally, we find the existence of additional constraints in Hamiltonian required to remove the ghosts in our full action. We also compare our results with that of obtained using Lagrangian formalism.


Sign in / Sign up

Export Citation Format

Share Document