scholarly journals Activity of the first interstellar comet 2I/Borisov around perihelion: results from Indian observatories

2021 ◽  
Vol 502 (3) ◽  
pp. 3491-3499
Author(s):  
K Aravind ◽  
Shashikiran Ganesh ◽  
Kumar Venkataramani ◽  
Devendra Sahu ◽  
Dorje Angchuk ◽  
...  

ABSTRACT Comet 2I/Borisov is the first true interstellar comet discovered. Here, we present results from observational programs at two Indian observatories, 2 m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle (HCT) and 1.2 m telescope at the Mount Abu Infrared Observatory (MIRO). Two epochs of imaging and spectroscopy were carried out at the HCT and three epochs of imaging at MIRO. We found CN to be the dominant molecular emission on both epochs, 2019 November 30 and December 22, at distances of rH = 2.013 and 2.031 au, respectively. The comet was inferred to be relatively depleted in Carbon bearing molecules on the basis of low C2 and C3 abundances. We find the production rate ratio, Q(C2)/Q(CN) = 0.54 ± 0.18, pre-perihelion and Q(C2)/Q(CN) = 0.34 ± 0.12 post-perihelion. This classifies the comet as being moderately depleted in carbon chain molecules. Using the results from spectroscopic observations, we believe the comet to have a chemically heterogeneous surface having variation in abundance of carbon chain molecules. From imaging observations, we infer a dust-to-gas ratio similar to carbon chain depleted comets of the Solar system. We also compute the nucleus size to be in the range 0.18 km ≤ r ≤ 3.1 km. Our observations show that 2I/Borisov’s behaviour is analogous to that of the Solar system comets.

2018 ◽  
Vol 14 (S345) ◽  
pp. 289-290
Author(s):  
Chen-En Wei ◽  
Hideko Nomura ◽  
Jeong-Eun Lee ◽  
Wing-Huen Ip ◽  
Catherine Walsh ◽  
...  

AbstractThe Earth is dramatically carbon poor comparing to the interstellar medium and the proto-sun. The carbon to silicon ratios in inner solar system objects show a correlation with heliocentric distance, which suggests that the destruction of carbon grains has occurred before planet formation. To examine this hypothesis, we perform model calculations using a chemical reaction network under the physical conditions typical of protoplanetary disks. Our results show that, when carbonaceous grains are destroyed and converted into the gas phase and the gas becomes carbon-rich, the abundances of carbon-bearing species such as HCN and carbon-chain molecules, increase dramatically near the midplane, while oxygen-bearing species such as H2O and CO2 are depleted. The carbon to silicon ratios obtained by our model calculations qualitatively reproduce the observed gradient with disk radius, but there are some quantitative discrepancies from the observed values of the solar system objects. We adopted the model of a disk around a Herbig Ae star and performed line radiative transfer calculations to examine the effect of carbon grain destruction through observations with ALMA. The results indicate that HCN, H13 CN and c-C3 H2 may be good tracers of this process.


2019 ◽  
Vol 488 (1) ◽  
pp. 495-511
Author(s):  
Yuefang Wu ◽  
Xunchuan Liu ◽  
Xi Chen ◽  
Lianghao Lin ◽  
Jinghua Yuan ◽  
...  

Abstract Using the new equipment of the Shanghai Tian Ma Radio Telescope, we have searched for carbon-chain molecules (CCMs) towards five outflow sources and six Lupus I starless dust cores, including one region known to be characterized by warm carbon-chain chemistry (WCCC), Lupus I-1 (IRAS 15398-3359), and one TMC-1 like cloud, Lupus I-6 (Lupus-1A). Lines of HC3N J = 2 − 1, HC5N J = 6 − 5, HC7N J = 14 − 13, 15 − 14, 16 − 15, and C3S J = 3 − 2 were detected in all the targets except in the outflow source L1660 and the starless dust core Lupus I-3/4. The column densities of nitrogen-bearing species range from 1012 to 1014 cm−2 and those of C3S are about 1012 cm−2. Two outflow sources, I20582+7724 and L1221, could be identified as new carbon-chain-producing regions. Four of the Lupus I dust cores are newly identified as early quiescent and dark carbon-chain-producing regions similar to Lup I-6, which together with the WCCC source, Lup I-1, indicate that carbon-chain-producing regions are popular in Lupus I which can be regard as a Taurus-like molecular cloud complex in our Galaxy. The column densities of C3S are larger than those of HC7N in the three outflow sources I20582, L1221, and L1251A. Shocked carbon-chain chemistry is proposed to explain the abnormal high abundances of C3S compared with those of nitrogen-bearing CCMs. Gas-grain chemical models support the idea that shocks can fuel the environment of those sources with enough S+ thus driving the generation of S-bearing CCMs.


2018 ◽  
Vol 620 ◽  
pp. A93 ◽  
Author(s):  
E. Mazzotta Epifani ◽  
E. Dotto ◽  
S. Ieva ◽  
D. Perna ◽  
P. Palumbo ◽  
...  

Aims. We present observations of 523676 (2013 UL10), a centaur orbiting between Jupiter and Uranus that is dynamically similar to the few tens of active centaurs that are currently known. Methods. We analysed visible BVR images of the centaur obtained at the Telescopio Nazionale Galileo (La Palma, Canary Islands, Spain) to investigate the weak comet-like activity and to derive information on the nucleus surface colours and size. Results. Centaur 523676 (2013 UL10) is the only centaur known so far that has both comet-like activity and red surface colours: its nucleus has a colour index [B – R] = 1.88 ± 0.11. The nucleus R magnitude (R = 20.93 ± 0.09) allowed us to derive an upper limit for its nucleus size of D ≤ 10 km. We estimated its dust production rate to be Qd ~ 10 kg s−1 at 6.2 au (just after its perihelion passage), resulting in a timescale for the surface blanketing process τB of approximately tens of years, which is very short with respect to typical dynamical lifetime inside the group. Future monitoring of 523676 (2013 UL10) is needed to further constrain the blanketing model for active centaurs and its timescale.


2020 ◽  
Author(s):  
Youssef Moulane ◽  
Emmanuel Jehin ◽  
Francisco José Pozuelos ◽  
Jean Manfroid ◽  
Zouhair Benkhaldoun ◽  
...  

<p>Long Period Comets (LPCs) have orbital periods longer than 200 years, perturbed from their resting place in the Oort cloud. Such gravitational influences may send these icy bodies on a path towards the center of the Solar system in highly elliptical orbits. In this work, we present the activity and composition evolution of several LPCs observed with both TRAPPIST telescopes (TS and TN) during the period of 2019-2020. These comets include: C/2017 T2 (PANSTARRS), C/2018 Y1 (Iwamoto), C/2018 W2 (Africano), and disintegrated comet C/2019 Y4 (ATLAS). We monitored the OH, NH, CN, C<sub>2</sub> and C<sub>3</sub> production rates evolution and their chemical mixing ratios with respect to their distances to the Sun as well as the dust production rate proxy (A(0)fp) during the journey of these comets into the inner Solar system.</p> <p><strong>C/2017 T2 (PANSTARRS)</strong> is a very bright comet which was discovered on October 2, 2017 when it was 9.20 au from the Sun. We started observing this comet with TS at the beginning of August 2019 when it was at 3.70 au. The comet made the closest approach to the Earth on December 28, 2019 at a distance of 1.52 au and it passed the perihelion on May 4, 2020 at 1.61 au. The water production rate of the comet reached a maximum of (4,27±0,12)10<sup>28 </sup>molecules/s and its dust production rate (A(0)fp(RC)) also reached the peak of 5110±25 cm on January 26, 2020, when the comet was at 2.08 au from the Sun (-100 days pre-perihelion). At the time of writing, we still monitoring the activity of the comet with TN at heliocentric distance of 1.70 au. Our observations show that C/2017 T2 is a normal LPC.</p> <p><strong>C/2018 Y1 (Iwamoto)</strong> is a nearly parabolic comet with a retrograde orbit discovered on December 18, 2018 by Japanese amateur astronomer Masayuki Iwamoto. We monitored the activity and composition of Iwamoto with both TN and TS telescopes from January to March 2019. The comet reached its maximum activity on January 29, 2019 when it was at 1.29 au from the Sun (-8 days pre-perihelion) with Q(H<sub>2</sub>O)=(1,68±0,05)10<sup>28 </sup>molecules/s and A(0)fp(RC)= 92±5 cm. These measurements show that it was a dust-poor comet compared to the typical LPCs.</p> <p><strong>C/2018 W2 (Africano) </strong>was discovered on November 27, 2018 at Mount Lemmon Survey with a visual magnitude of 20. The comet reached its perihelion on September 6, 2019 when it was at 1.45 au from the Sun. We monitored the comet from July 2019 (r<sub>h</sub>=1.71 au) to January 2020 (r<sub>h</sub>=2.18 au) with both TN and TS telescopes. The comet reached its maximum activity on September 21, 15 days post-perihelion (r<sub>h</sub>=1.47 au) with Q(H<sub>2</sub>O)=(0,40±0,03)10<sup>28 </sup>molecules/s.</p> <p><strong>C/2019 Y4 (ATLAS)</strong> is a comet with a nearly parabolic orbit discovered on December 18, 2019 by the ATLAS survey. We started to follow its activity and composition with broad- and narrow-band filters with the TN telescope on February 22, 2019 when it was at 1.32 au from the Sun until May 3, 2020 when the comet was at a heliocentric distance of 0.90 au inbound. The comet activity reached a maximum on March 22 (r<sub>h</sub>=1.65 au) 70 days before perihelion. At that time, the water-production rate reached (1,53±0,04)10<sup>28 </sup>molecules/s and the A(0)fp reached (1096±14) cm in the red filter. After that, the comet began to fade and disintegrated into several fragments.</p>


1986 ◽  
Vol 64 (4) ◽  
pp. 641-648 ◽  
Author(s):  
Seksan Dheandhanoo ◽  
Leonard Forte ◽  
Arnold Fox ◽  
Diethard K. Bohme

Reactions of hydrocarbon and carbon/nitrogen ions with diacetylene and of the diacetylene radical cation with various molecules have been examined with a view to molecular growth by ion–molecule reaction. Measurements were performed with a Selected-Ion Flow Tube (SIFT) apparatus at 296 ± 2 K of the rate constants and product distributions for the reactions of C+, CH3+, C2H2+, C3H+, CN+, C2N+, and C2N2+ with C4H2 and of C4H2+ with H2, CO, C2H2, C2N2, and C4H2. Condensation and association reactions which build up the carbon content of the ion were observed to compete with charge transfer. For the reactions of CN+ and C2N2+ with C4H2 this growth involved the addition of cyanide to the carbon chain. The kinetics of protonation of diacetylene were also investigated. It was possible to bracket the proton affinity of diacetylene between the known proton affinities of HCN and CH3OH with a value for PA(C4H2) = 177 ± 5 kcal mol−1, which results in a heat of formation for C4H3+ of 305 ± 5 kcal mol−1. Numerous secondary association reactions were observed to form adduct ions in helium buffer gas at total pressures of a few tenths of a Torr with rates near the collision rate. This was the case for C6H4+ (C4H2+•C2H2), C7H5+ (C3H3+•C4H2), C8H4+ (C4H2+•C4H2), C8H5+ (C4H3+•C4H2), C9H3+ (C5H+•C4H2), C9H4+ (C5H2+•C4H2), C9H5 (C5H3+•C4H2), C10H4+ (C6H2+•C4H2), C10H5+ (C6H3+•C4H2), C11H7+ (C3H3+•(C4H2)2), C12H6+ (C4H2+•(C4H2)2), C9H3N+ (HC5N+•C4H2), and C10H4N+ (C2N+•(C4H2)2) where the reactants are indicated in parentheses. The observed high rates of association imply the formation of chemical bonds in the adduct ions but the structures of these ions were not resolved experimentally. In most instances there seems little basis for preferring acyclic over cyclic adduct ions.


Author(s):  
Huiyan Zhang ◽  
Yong Yu ◽  
Dan Yan ◽  
Kai Tang ◽  
Rongchuan Qiao

Abstract With unique orbital and physical characteristics, Triton is a very important target since it may contain information of the origin and evolution of the solar system. Besides space explorations, ground-based observations over long time also play key role on research of Triton. High-precision positions of Triton obtained from ground telescopes are of great significance for studying its orbital evolution and inverting the physical properties of Neptune. As a long-term observational target, Triton has been observed by the 1.56 m telescope of Shanghai Astronomical Observatory since 1996. In this paper, based on our AAPPDI software and with Gaia DR2 as the reference catalogue, 604 positions of Triton during 2010-2014 are calculated, with standard errors of $19mas-88mas$. A comparison between our results and the ephemeris (DE431+nep096) is also given.


1980 ◽  
pp. 59-65 ◽  
Author(s):  
G. Winnewisser ◽  
F. Toelle ◽  
H. Ungerechts ◽  
C. M. Walmsley
Keyword(s):  

1992 ◽  
Vol 394 ◽  
pp. 539 ◽  
Author(s):  
Yasuhiro Hirahara ◽  
Hiroko Suzuki ◽  
Satoshi Yamamoto ◽  
Kentarou Kawaguchi ◽  
Norio Kaifu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document