scholarly journals Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation

Author(s):  
Enrico Garaldi ◽  
Rüdiger Pakmor ◽  
Volker Springel

Abstract We study the evolution of magnetic fields generated by charge segregation ahead of ionization fronts during the Epoch of Reionization, and their effects on galaxy formation. We compare this magnetic seeding process with the Biermann battery, injection from supernovae, and an imposed seed field at redshift z ≳ 127. Using a suite of self-consistent cosmological and zoom-in simulations based on the Auriga galaxy-formation model, we determine that all mechanisms produce galactic magnetic fields that equally affect galaxy formation, and are nearly indistinguishable at z ≲ 1.5. The former is compatible with observed values, while the latter is correlated with the gas metallicity below a seed-dependent redshift. Low-density gas and haloes below a seed-dependent mass threshold retain memory of the initial magnetic field. We produce synthetic Faraday rotation measure maps, showing that they have the potential to constrain the seeding process, although current observations are not yet sensitive enough. Our results imply that the ad-hoc assumption of a primordial seed field – widely used in galaxy formation simulations but of uncertain physical origin – can be replaced by physically-motivated mechanisms for magnetogenesis with negligible impact on galactic properties. Additionally, magnetic fields generated ahead of ionization fronts appear very similar but weaker than those produced by the Biermann battery. Hence, in a realistic scenario where both mechanisms are active, the former will be negligible compared to the latter. Finally, our results highlight that the high-redshift Universe is a fruitful testing ground for our understanding of magnetic fields generation.

2019 ◽  
Vol 15 (S352) ◽  
pp. 43-43
Author(s):  
Pratika Dayal

AbstractGalaxy formation in the first billion years mark a time of great upheaval in the history of the Universe: the first galaxies started both the ‘metal age’ as well as the era of cosmic reionization. I will start by reviewing the dust production mechanisms and dust masses for high-redshift galaxies which will be revolutionized in the ALMA era. I will then show how the JWST will be an invaluable experiment to shed light on the impact of reionization feedback on early galaxy formation. As we look forward towards the era of 21cm cosmology, I will highlight the crucial and urgent synergies required between 21cm facilities (such as the SKA) and galaxy experiments (JWST, E-ELT and Subaru to name a few) to understand the physics of the epoch of reionization that remains a crucial frontier in the field of astrophysics and physical cosmology. Time permitting, I will try to give a flavour of how the assembly of early galaxies, accessible with the forthcoming JWST, can provide a powerful testbed for Dark Matter models beyond ‘Cold Dark Matter’.


2001 ◽  
pp. 295-306
Author(s):  
C. M. Baugh ◽  
A. J. Benson ◽  
S. Cole ◽  
C. S. Frenk ◽  
C. G. Lacey

2019 ◽  
Vol 486 (3) ◽  
pp. 4377-4397 ◽  
Author(s):  
Jens-Kristian Krogager ◽  
Johan P U Fynbo ◽  
Palle Møller ◽  
Pasquier Noterdaeme ◽  
Kasper E Heintz ◽  
...  

ABSTRACT We present a systematic study of the impact of a dust bias on samples of damped Ly α absorbers (DLAs). This bias arises as an effect of the magnitude and colour criteria utilized in the Sloan Digital Sky Survey (SDSS) quasar target selection up until data release 7 (DR7). The bias has previously been quantified assuming only a contribution from the dust obscuration. In this work, we apply the full set of magnitude and colour criteria used up until SDSS-DR7 in order to quantify the full impact of dust biasing against dusty and metal-rich DLAs. We apply the quasar target selection algorithm on a modelled population of intrinsic colours, and by exploring the parameter space consisting of redshift, ($z_{\rm{\small QSO}}$and zabs), optical extinction, and H i column density, we demonstrate how the selection probability depends on these variables. We quantify the dust bias on the following properties derived for DLAs at z ≈ 3: the incidence rate, the mass density of neutral hydrogen and metals, and the average metallicity. We find that all quantities are significantly affected. When considering all uncertainties, the mass density of neutral hydrogen is underestimated by 10–50 per cent, and the mass density in metals is underestimated by 30–200 per cent. Lastly, we find that the bias depends on redshift. At redshift z = 2.2, the mass density of neutral hydrogen and metals might be underestimated by up to a factor of 2 and 5, respectively. Characterizing such a bias is crucial in order to accurately interpret and model the properties and metallicity evolution of absorption-selected galaxies.


2019 ◽  
Vol 15 (S341) ◽  
pp. 12-16 ◽  
Author(s):  
A. Faisst ◽  
M. Béthermin ◽  
P. Capak ◽  
P. Cassata ◽  
O. Le Fèvre ◽  
...  

AbstractThanks to deep optical to near-IR imaging and spectroscopy, significant progress is made in characterizing the rest-frame UV to optical properties of galaxies in the early universe (z > 4. Surveys with Hubble, Spitzer, and ground-based facilities (Keck, Subaru, and VLT) provide spectroscopic and photometric redshifts, measurements of the spatial structure, stellar masses, and optical emission lines for large samples of galaxies. Recently, the Atacama Large (Sub) Millimeter Array (ALMA) has become a major player in pushing studies of high redshift galaxies to far-infrared wavelengths, hence making panchromatic surveys over many orders of frequencies possible. While past studies focused mostly on bright sub-millimeter galaxies, the sensitivity of ALMA now enables surveys like ALPINE, which focuses on measuring the gas and dust properties of a large sample of normal main-sequence galaxies at z > 4. Combining observations across different wavelengths into a single, panchromatic picture of galaxy formation and evolution is currently and in the future an important focus of the astronomical community.


2019 ◽  
Vol 15 (S352) ◽  
pp. 69-69
Author(s):  
Anne Hutter

AbstractReionization represents an important epoch in the history in the Universe, when the first stars and galaxies gradually ionize the neutral hydrogen in the intergalactic medium (IGM). Understanding the nature of the ionizing sources, the associated ionization of the IGM, and its impact on subsequent structure formation and galaxy evolution by means of radiative feedback effects, represent key outstanding questions in current astrophysics. High-redshift galaxy observations and simulations have significantly extended our knowledge on the nature of high-redshift galaxies. However, essential properties such as the escape fraction of ionizing photons from galaxies into the IGM and their dependency on galactic properties remain essentially unknown, but determine significantly the distribution and time evolution of the ionized regions during reionization. Analyzing this ionization topology by means of the neutral hydrogen sensitive 21cm signal with radio interferometers such as SKA offers a complementary and unique opportunity to determine the nature of these first galaxies. I will show results from a self-consistent semi-numerical model of galaxy evolution and reionization, and discuss the potential of inferring galactic properties with the 21cm signal as well as the impact of reionization on the high-redshift galaxy population and its evolution.


2006 ◽  
Vol 2 (S235) ◽  
pp. 172-174
Author(s):  
Kenji Bekki

AbstractWe discuss how stellar galactic nuclei (SGN) form and evolve during galaxy formation and evolution based on chemodynamical simulations on the central regions (1-1000 pc) of galaxies. Our simulations demonstrate that dissipative formation of SGN through rapid transfer of gas into the central 10 pc of galaxies is more consistent with recent observations of SGN than dissipationless formation of SGN through merging of globular clusters (GCs). Nuclear structures in the remnants of major galaxy mergers between low-mass, nucleated spirals are found to depend strongly on the mass-ratio of massive black holes (MBHs) to SGN in spirals in the sense that the remnants have more distinct SGN in the mergers with the smaller MBH-to-SGN-mass-ratios. During the destruction of low-mass, nucleated galaxies by strong tidal fields of giant galaxies, SGN can remain intact. The stripped SGN can be observed as bright GCs around the giant galaxies. The color-magnitude relation of metal-poor GCs (referred to as “the blue tilt”) recently discovered for bright galaxies is similar to that of SGN, which suggests that the origin of the blue tilt is closely associated with the formation processes of SGN of gas-rich, low-mass dwarfs in the high redshift universe.


2020 ◽  
Vol 497 (4) ◽  
pp. 5008-5023 ◽  
Author(s):  
Alexander Schäbe ◽  
Emilio Romano-Díaz ◽  
Cristiano Porciani ◽  
Aaron D Ludlow ◽  
Matteo Tomassetti

ABSTRACT Modelling the molecular gas that is routinely detected through CO observations of high-redshift galaxies constitutes a major challenge for ab initio simulations of galaxy formation. We carry out a suite of cosmological hydrodynamic simulations to compare three approximate methods that have been used in the literature to track the formation and evolution of the simplest and most abundant molecule, H2. Namely, we consider (i) a semi-empirical procedure that associates H2 to dark-matter haloes based on a series of scaling relations inferred from observations, (ii) a model that assumes chemical equilibrium between the H2 formation and destruction rates, and (iii) a model that fully solves the out-of-equilibrium rate equations and accounts for the unresolved structure of molecular clouds. We study the impact of finite spatial resolution and show that robust H2 masses at redshift $z$ ≈ 4 can only be obtained for galaxies that are sufficiently metal enriched in which H2 formation is fast. This corresponds to H2 reservoirs with masses $M_{\mathrm{H_2}}\gtrsim 6\times 10^9$ M⊙. In this range, equilibrium and non-equilibrium models predict similar molecular masses (but different galaxy morphologies) while the semi-empirical method produces less H2. The star formation rates as well as the stellar and H2 masses of the simulated galaxies are in line with those observed in actual galaxies at similar redshifts that are not massive starbursts. The H2 mass functions extracted from the simulations at $z$ ≈ 4 agree well with recent observations that only sample the high-mass end. However, our results indicate that most molecular material at high $z$ lies yet undetected in reservoirs with $10^9\lt M_{\mathrm{H}_2}\lt 10^{10}$ M⊙.


2019 ◽  
Vol 490 (2) ◽  
pp. 2706-2716 ◽  
Author(s):  
Muhammad A Latif ◽  
Sadegh Khochfar

ABSTRACT The first galaxies forming a few hundred million years after the big bang are the key drivers of cosmic evolution and ideal laboratories to study theories of galaxy formation. We here study the role of UV radiation in suppressing star formation in primordial galaxies by destroying molecular hydrogen, the main coolant in primordial gas, and provide estimates of cold dense gas at the onset of star formation. To accomplish this goal, we perform three-dimensional cosmological simulations of minihaloes in different environments forming at z ∼ 25 by varying strength of background UV flux below the Lyman limit between 0.01–1000 in units of $\rm J_{21}=10^{-21}\, erg \,cm^{-2} \,s^{-1} \,Hz^{-1} \,sr^{-1}$. Particularly, we include photodetachment of $\rm H^-$, the self-shielding of $\rm H_2$, which both were neglected in previous studies and use updated reaction rates. Our results show that depending on the background level $\rm H_2$ formation is suppressed, delaying gravitational collapse until haloes reach the atomic cooling limit. We find that the formation of cold dense molecular gas and subsequently star formation gets delayed by 100–230 Myr depending on the level of the background radiation and the growth history of the dark matter haloes. The fraction of dense self-shielded gas is a strong function of the background flux and exponentially declines with the strength of incident UV flux above $\rm J_{21} \ge 1$. We find that taking into account $\rm H_2$ self-shielding is crucial for accurately estimating the amount of cold dense gas available for star formation.


2020 ◽  
Vol 492 (2) ◽  
pp. 2535-2552
Author(s):  
Andrew J Griffin ◽  
Cedric G Lacey ◽  
Violeta Gonzalez-Perez ◽  
Claudia del P Lagos ◽  
Carlton M Baugh ◽  
...  

ABSTRACT Telescopes to be launched over the next decade and a half, such as JWST, EUCLID, ATHENA, and Lynx, promise to revolutionize the study of the high-redshift Universe and greatly advance our understanding of the early stages of galaxy formation. We use a model that follows the evolution of the masses and spins of supermassive black holes (SMBHs) within a semi-analytic model of galaxy formation to make predictions for the active galactic nucleus luminosity function at $z$ ≥ 7 in the broadband filters of JWST and EUCLID at near-infrared wavelengths, and ATHENA and Lynx at X-ray energies. The predictions of our model are relatively insensitive to the choice of seed black hole mass, except at the lowest luminosities (Lbol < 1043 erg s−1) and the highest redshifts ($z$ > 10). We predict that surveys with these different telescopes will select somewhat different samples of SMBHs, with EUCLID unveiling the most massive, highest accretion rate SMBHs, Lynx the least massive, lowest accretion rate SMBHs, and JWST and ATHENA covering objects inbetween. At $z$ = 7, we predict that typical detectable SMBHs will have masses, MBH ∼ 105–8 M⊙, and Eddington normalized mass accretion rates, $\dot{M}/\dot{M}_{\mathrm{Edd}}\sim 0.6{-}2$. The SMBHs will be hosted by galaxies of stellar mass M⋆ ∼ 108–10 M⊙, and dark matter haloes of mass Mhalo ∼ 1011–12 M⊙. We predict that the detectable SMBHs at $z$ = 10 will have slightly smaller black holes, accreting at slightly higher Eddington normalized mass accretion rates, in slightly lower mass host galaxies compared to those at $z$ = 7, and reside in haloes of mass Mhalo ∼ 1010–11 M⊙.


2012 ◽  
Vol 8 (S295) ◽  
pp. 21-21
Author(s):  
Ke-Jung Chen ◽  
Myoungwon Jeon ◽  
Thomas Greif ◽  
Volker Bromm ◽  
Alexander Heger

AbstractWe present the results from our cosmological simulations of the first stages of galaxy formation. We use Gadget-2 (Springel 2005), modified to include detailed cooling, chemistry, and radiative transfer of primordial gas to study the impact of the first stars on galaxy formation. In contrast to previous work, we apply a realistic treatment of stellar feedback by using updated stellar models for the first stars. In this proceeding, we briefly summarize how stellar feedback from the first stars affects the primordial IGM inside the first galaxies.


Sign in / Sign up

Export Citation Format

Share Document