scholarly journals AGNs at the cosmic dawn: predictions for future surveys from a ΛCDM cosmological model

2020 ◽  
Vol 492 (2) ◽  
pp. 2535-2552
Author(s):  
Andrew J Griffin ◽  
Cedric G Lacey ◽  
Violeta Gonzalez-Perez ◽  
Claudia del P Lagos ◽  
Carlton M Baugh ◽  
...  

ABSTRACT Telescopes to be launched over the next decade and a half, such as JWST, EUCLID, ATHENA, and Lynx, promise to revolutionize the study of the high-redshift Universe and greatly advance our understanding of the early stages of galaxy formation. We use a model that follows the evolution of the masses and spins of supermassive black holes (SMBHs) within a semi-analytic model of galaxy formation to make predictions for the active galactic nucleus luminosity function at $z$ ≥ 7 in the broadband filters of JWST and EUCLID at near-infrared wavelengths, and ATHENA and Lynx at X-ray energies. The predictions of our model are relatively insensitive to the choice of seed black hole mass, except at the lowest luminosities (Lbol < 1043 erg s−1) and the highest redshifts ($z$ > 10). We predict that surveys with these different telescopes will select somewhat different samples of SMBHs, with EUCLID unveiling the most massive, highest accretion rate SMBHs, Lynx the least massive, lowest accretion rate SMBHs, and JWST and ATHENA covering objects inbetween. At $z$ = 7, we predict that typical detectable SMBHs will have masses, MBH ∼ 105–8 M⊙, and Eddington normalized mass accretion rates, $\dot{M}/\dot{M}_{\mathrm{Edd}}\sim 0.6{-}2$. The SMBHs will be hosted by galaxies of stellar mass M⋆ ∼ 108–10 M⊙, and dark matter haloes of mass Mhalo ∼ 1011–12 M⊙. We predict that the detectable SMBHs at $z$ = 10 will have slightly smaller black holes, accreting at slightly higher Eddington normalized mass accretion rates, in slightly lower mass host galaxies compared to those at $z$ = 7, and reside in haloes of mass Mhalo ∼ 1010–11 M⊙.

2020 ◽  
Vol 15 (S359) ◽  
pp. 11-16
Author(s):  
Rainer Weinberger

AbstractModels for massive black holes are a key ingredient for modern cosmological simulations of galaxy formation. The necessity of efficient AGN feedback in these simulations makes it essential to model the formation, growth and evolution of massive black holes, and parameterize these complex processes in a simplified fashion. While the exact formation mechanism is secondary for most galaxy formation purposes, accretion modeling turns out to be crucial. It can be informed by the properties of the high redshift quasars, accreting close to their Eddington limit, by the quasar luminosity function at peak activity and by low-redshift scaling relations. The need for halo-wide feedback implies a feedback-induced reduction of the accretion rate towards low redshift, amplifying the cosmological trend towards lower accretion rates at low redshift.


2020 ◽  
Vol 494 (2) ◽  
pp. 2747-2759 ◽  
Author(s):  
Madeline A Marshall ◽  
Simon J Mutch ◽  
Yuxiang Qin ◽  
Gregory B Poole ◽  
J Stuart B Wyithe

ABSTRACT Correlations between black holes and their host galaxies provide insight into what drives black hole–host co-evolution. We use the Meraxes semi-analytic model to investigate the growth of black holes and their host galaxies from high redshift to the present day. Our modelling finds no significant evolution in the black hole–bulge and black hole–total stellar mass relations out to a redshift of 8. The black hole–total stellar mass relation has similar but slightly larger scatter than the black hole–bulge relation, with the scatter in both decreasing with increasing redshift. In our modelling, the growth of galaxies, bulges, and black holes are all tightly related, even at the highest redshifts. We find that black hole growth is dominated by instability-driven or secular quasar-mode growth and not by merger-driven growth at all redshifts. Our model also predicts that disc-dominated galaxies lie on the black hole–total stellar mass relation, but lie offset from the black hole–bulge mass relation, in agreement with recent observations and hydrodynamical simulations.


2020 ◽  
Vol 501 (1) ◽  
pp. 269-280
Author(s):  
Xuheng Ding ◽  
Tommaso Treu ◽  
Simon Birrer ◽  
Adriano Agnello ◽  
Dominique Sluse ◽  
...  

ABSTRACT One of the main challenges in using high-redshift active galactic nuclei (AGNs) to study the correlations between the mass of a supermassive black hole ($\mathcal {M}_{\rm BH}$) and the properties of its active host galaxy is instrumental resolution. Strong lensing magnification effectively increases instrumental resolution and thus helps to address this challenge. In this work, we study eight strongly lensed AGNs with deep Hubble Space Telescope imaging, using the lens modelling code lenstronomy to reconstruct the image of the source. Using the reconstructed brightness of the host galaxy, we infer the host galaxy stellar mass based on stellar population models. $\mathcal {M}_{\rm BH}$ are estimated from broad emission lines using standard methods. Our results are in good agreement with recent work based on non-lensed AGNs, demonstrating the potential of using strongly lensed AGNs to extend the study of the correlations to higher redshifts. At the moment, the sample size of lensed AGNs is small and thus they provide mostly a consistency check on systematic errors related to resolution for non-lensed AGNs. However, the number of known lensed AGNs is expected to increase dramatically in the next few years, through dedicated searches in ground- and space-based wide-field surveys, and they may become a key diagnostic of black holes and galaxy co-evolution.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


2001 ◽  
pp. 295-306
Author(s):  
C. M. Baugh ◽  
A. J. Benson ◽  
S. Cole ◽  
C. S. Frenk ◽  
C. G. Lacey

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter investigates a number of specific observational probes of the high-redshift Universe. It examines the Lyman-α‎ line, an extraordinarily rich and useful—albeit complex—probe of both galaxies and the intergalactic medium (IGM). As established in the previous chapter, young star-forming galaxies can produce very bright Lyman-α‎ emissions. Although the radiative transfer of these photons through their host galaxies is typically very complex, a good starting point is a simple model in which a fraction of stellar ionizing photons are absorbed within their source galaxy, forming embedded H II regions. The resulting protons and electrons then recombine, producing Lyman-α‎ photons. Assuming ionization equilibrium, the rate of these recombinations must equal the rate at which ionizing photons are produced.


2016 ◽  
Vol 12 (S329) ◽  
pp. 454-454
Author(s):  
Michael Wegner ◽  
Ralf Bender ◽  
Ray Sharples ◽  

AbstractKMOS, the “K-Band Multi-Object Spectrometer”, was built by a British-German consortium as a second generation instrument for the ESO Paranal Observatory. It is available to the user community since its successful commissioning in 2013 (Sharples et al. 2013). As a multi-object integral field spectrometer for the near infrared, KMOS offers 24 deployable IFUs of 2.8x2.8 arcsec and 14x14 spatial pixels each, which can either be placed individually within a 7.2 arcmin field of view or combined in a Mosaic mode in order to map contiguous fields on sky. The instrument covers the whole range of NIR atmospheric windows (0.8. . .2.5μm) with 5 spectral bands and a resolution of R ≈ 3000. . .4000.Although the main science driver for KMOS was to enable the study of galaxy formation and evolution through multiplexed observations of high-redshift galaxies, KMOS also already exhibited its tremendous potential for the spectroscopy of massive stars: A quantitative study of 27 RSGs in NGC 300 (Gazak et al. 2015) proves its applicability for the spectroscopy of individual stars even beyond the Local Group. A Mosaic observation of the Galactic centre (Feldmeier-Krause et al. 2015) demonstrates how spectra of early-type stars can be extracted from a contiguous field. Other applications include (but need not be limited to) velocity determinations of globular cluster stars, observations of jets/outflows of high mass protostars, or contiguous mapping of star-forming regions.We therefore aim at presenting the excellent capabilities of KMOS to a wider community and indicate potential applications.


2004 ◽  
Vol 194 ◽  
pp. 192-193
Author(s):  
Dean M. Townsley ◽  
Lars Bildsten

AbstractWe have undertaken a theoretical study of the impact of the accumulating envelopes on the thermal state of the underlying white dwarf (WD). This has allowed us to find the equilibrium WD core temperatures, the classical nova ignition masses and the thermal luminosities for WDs accreting at rates of 10–11 – 10–8M⊙ yr–1. These accretion rates are most, appropriate to WDs in cataclysmic variables (CVs) of (Porb ≲ 7 hr), many of which accrete sporadically as Dwarf Novae. Over twenty Dwarf Novae have been observed in quiescence, when the accretion rate is low and the WD photosphere is detected and Teff measured. Comparing our theoretical work to these observations allows us to constrain the WD mass and the time averaged accretion rate, ⟨Ṁ⟩. If ⟨Ṁ⟩ is that given by gravitational radiation losses alone, then the WD masses are > 0.8 M⊙. An alternative conclusion is that the masses are closer to 0.6M⊙ and ⟨Ṁ⟩ is 3-4 times larger than that expected from gravitational radiation losses.


2017 ◽  
Vol 12 (S333) ◽  
pp. 238-241 ◽  
Author(s):  
René Laureijs

AbstractEuclid enables the exploration of large sky areas with diffraction limited resolution in the optical and near-infrared, and is sensitive enough to detect targets at cosmological distances. This combination of capabilities gives Euclid a clear advantage over telescope facilities with larger apertures, both on ground and in space. The decision to mount in the NISP instrument one extra grism for the wavelength range 0.92-1.3 μm with a spectral resolution of R ≈260 makes possible a rest-frame UV survey of the early Universe in the redshift range 6.5 < z < 9.7. Euclid’s standard imaging with VIS in the 0.55-0.9 μm band and with NISP in the Y, J, H bands provide complementary photometry for further target identification and characterization. Euclid is a suitable facility to discover and map the spatial distribution of rare high-redshift targets and to collect statistically relevant samples, in particular of high redshift Lyα emitters and QSOs, which can be used as signposts of the cosmic structures. The Euclid surveys are also a starting point for deeper follow up observations of the individual high-z objects. We present the Euclid mission and discuss the detectability of high-z objects to probe the epoch of ionization.


2017 ◽  
Vol 26 (11) ◽  
pp. 1730021 ◽  
Author(s):  
Mar Mezcua

Intermediate-mass black holes (IMBHs), with masses in the range [Formula: see text]–[Formula: see text][Formula: see text]M[Formula: see text], are the link between stellar-mass BHs and supermassive BHs (SMBHs). They are thought to be the seeds from which SMBHs grow, which would explain the existence of quasars with BH masses of up to 10[Formula: see text][Formula: see text]M[Formula: see text] when the Universe was only 0.8 Gyr old. The detection and study of IMBHs has thus strong implications for understanding how SMBHs form and grow, which is ultimately linked to galaxy formation and growth, as well as for studies of the universality of BH accretion or the epoch of reionization. Proving the existence of seed BHs in the early Universe is not yet feasible with the current instrumentation; however, those seeds that did not grow into SMBHs can be found as IMBHs in the nearby Universe. In this review, I summarize the different scenarios proposed for the formation of IMBHs and gather all the observational evidence for the few hundreds of nearby IMBH candidates found in dwarf galaxies, globular clusters, and ultraluminous X-ray sources, as well as the possible discovery of a few seed BHs at high redshift. I discuss some of their properties, such as X-ray weakness and location in the BH mass scaling relations, and the possibility to discover IMBHs through high velocity clouds, tidal disruption events, gravitational waves, or accretion disks in active galactic nuclei. I finalize with the prospects for the detection of IMBHs with up-coming observatories.


Sign in / Sign up

Export Citation Format

Share Document