scholarly journals What to expect when using globular clusters as tracers of the total mass distribution in Milky Way-mass galaxies

2021 ◽  
Vol 502 (2) ◽  
pp. 2828-2844
Author(s):  
Meghan E Hughes ◽  
Prashin Jethwa ◽  
Michael Hilker ◽  
Glenn van de Ven ◽  
Marie Martig ◽  
...  

ABSTRACT Dynamical models allow us to connect the motion of a set of tracers to the underlying gravitational potential, and thus to the total (luminous and dark) matter distribution. They are particularly useful for understanding the mass and spatial distribution of dark matter (DM) in a galaxy. Globular clusters (GCs) are an ideal tracer population in dynamical models, since they are bright and can be found far out into the halo of galaxies. We aim to test how well Jeans-Anisotropic-MGE (JAM) models using GCs (positions and line-of-sight velocities) as tracers can constrain the mass and radial distribution of DM haloes. For this, we use the E-MOSAICS suite of 25 zoom-in simulations of L* galaxies. We find that the DM halo properties are reasonably well recovered by the JAM models. There is, however, a strong correlation between how well we recover the mass and the radial distribution of the DM and the number of GCs in the galaxy: the constraints get exponentially worse with fewer GCs, and at least 150 GCs are needed in order to guarantee that the JAM model will perform well. We find that while the data quality (uncertainty on the radial velocities) can be important, the number of GCs is the dominant factor in terms of the accuracy and precision of the measurements. This work shows promising results for these models to be used in extragalactic systems with a sample of more than 150 GCs.

1988 ◽  
Vol 126 ◽  
pp. 663-664
Author(s):  
G. Meylan

The southern sky gives us the great opportunity to observe two among the brightest and nearest globular clusters of the Galaxy: ω Cen and 47 Tuc. For these giant clusters, we present the comparison between observations and King-Michie multi-mass dynamical models with anisotropy in the velocity dispersion. A more comprehensive description of this work is to be published (Meylan 1986a,b).


2011 ◽  
Vol 20 (2) ◽  
Author(s):  
T. Sepp ◽  
E. Tempel ◽  
M. Gramann ◽  
P. Nurmi ◽  
M. Haupt

AbstractThe SDSS galaxy catalog is one of the best databases for galaxy distribution studies. The SDSS DR8 data is used to construct the galaxy cluster catalog. We construct the clusters from the calculated luminosity density field and identify denser regions. Around these peak regions we construct galaxy clusters. Another interesting question in cosmology is how observable galaxy structures are connected to underlying dark matter distribution. To study this we compare the SDSS DR7 galaxy group catalog with galaxy groups obtained from the semi-analytical Millennium N-Body simulation. Specifically, we compare the group richness, virial radius, maximum separation and velocity dispersion distributions and find a relatively good agreement between the mock catalog and observations. This strongly supports the idea that the dark matter distribution and galaxies in the semi-analytical models and observations are very closely linked.


2020 ◽  
Vol 639 ◽  
pp. A125
Author(s):  
Alberto Manjón-García ◽  
Jose M. Diego ◽  
Diego Herranz ◽  
Daniel Lam

We performed a free-form strong lensing analysis of the galaxy cluster MACS J1206.2−0847 in order to estimate and constrain its inner dark matter distribution. The free-form method estimates the cluster total mass distribution without using any prior information about the underlying mass. We used 97 multiple lensed images belonging to 27 background sources and derived several models, which are consistent with the data. Among these models, we focus on those that better reproduce the radial images that are closest to the centre of the cluster. These radial images are the best probes of the dark matter distribution in the central region and constrain the mass distribution down to distances ∼7 kpc from the centre. We find that the morphology of the innermost radial arcs is due to the elongated morphology of the dark matter halo. We estimate the stellar mass contribution of the brightest cluster galaxy and subtracted it from the total mass in order to quantify the amount of dark matter in the central region. We fitted the derived dark matter density profile with a gNFW, which is characterised by rs = 167 kpc, ρs = 6.7 × 106 M⊙ kpc−3, and γgNFW = 0.70. These results are consistent with a dynamically relaxed cluster. This inner slope is smaller than the cannonical γ = 1 predicted by standard CDM models. This slope does not favour self-interacting models for which a shallower slope would be expected.


2016 ◽  
pp. 9-20 ◽  
Author(s):  
S. Samurovic

We study the well-known nearby early-type galaxy NGC 5128 (Centaurus A) and use the sample of its globular clusters to analyze its dynamics. We study both Newtonian and MOND models assuming three cases of orbital anisotropies: isotropic case, mildly tangentially anisotropic case and the radially anisotropic case based on the literature. We find that there are two regions with different values of the velocity dispersion: interior to ~ 3 effective radii the value of the velocity dispersion is approximately 150 km s?1 , whereas beyond ~ 3 effective radii its value increases to approximately 190 km s?1 , thus implying the increase of the total cumulative mass which is indicative of the existence of dark matter there in the Newtonian approach: the mass-to-light increases from M/LB = 7 in the inner regions to M/LB = 26 in the outer regions. We found that the Navarro-Frenk-White (NFW) model with dark halo provides good description of the dynamics of NGC 5128. Using three MOND models (standard, simple and toy), we find that they all provide good fits to the velocity dispersion of NGC 5128 and that no additional dark component is needed in MOND.


2020 ◽  
Vol 498 (1) ◽  
pp. L125-L129 ◽  
Author(s):  
Andrew Repp ◽  
István Szapudi

ABSTRACT The counts-in-cells (CIC) galaxy probability distribution depends on both the dark matter clustering amplitude σ8 and the galaxy bias b. We present a theory for the CIC distribution based on a previous prescription of the underlying dark matter distribution and a linear volume transformation to redshift space. We show that, unlike the power spectrum, the CIC distribution breaks the degeneracy between σ8 and b on scales large enough that both bias and redshift distortions are still linear; thus, we obtain a simultaneous fit for both parameters. We first validate the technique on the Millennium Simulation and then apply it to the Sloan Digital Sky Survey main galaxy sample. We find σ8 = 0.92 ± .08 and $b = 1.39^{+.11}_{-.09}$ consistent with previous complementary results from redshift distortions and from Planck.


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 74
Author(s):  
Kuantay Boshkayev ◽  
Talgar Konysbayev ◽  
Ergali Kurmanov ◽  
Orlando Luongo ◽  
Marco Muccino

We investigate the dark matter distribution in the spiral galaxy ESO0140040, employing the most widely used density profiles: the pseudo-isothermal, exponential sphere, Burkert, Navarro-Frenk-White, Moore and Einasto profiles. We infer the model parameters and estimate the total dark matter content from the rotation curve data. For simplicity, we assume that dark matter distribution is spherically symmetric without accounting for the complex structure of the galaxy. Our predictions are compared with previous results and the fitted parameters are statistically confronted for each profile. We thus show that although one does not include the galaxy structure it is possible to account for the same dynamics assuming that dark matter provides a non-zero pressure in the Newtonian approximation. In this respect, we solve the hydrostatic equilibrium equation and construct the dark matter pressure as a function for each profile. Consequently, we discuss the dark matter equation of state and calculate the speed of sound in dark matter. Furthermore, we interpret our results in view of our approach and we discuss the role of the refractive index as an observational signature to discriminate between our approach and the standard one.


2020 ◽  
Vol 498 (1) ◽  
pp. 1080-1092
Author(s):  
Rain Kipper ◽  
María Benito ◽  
Peeter Tenjes ◽  
Elmo Tempel ◽  
Roberto de Propris

ABSTRACT A galaxy moving through a background of dark matter particles induces an overdensity of these particles or a wake behind it. The back reaction of this wake on the galaxy is a force field that can be decomposed into an effective deceleration (called dynamical friction) and a tidal field. In this paper, we determine the tidal forces, thus generated on the galaxy, and the resulting observables, which are shown to be warps, lopsidedness, and/or kinematic-photometric position angle misalignments. We estimate the magnitude of the tidal-like effects needed to reproduce the observed warp and lopsidedness on the isolated galaxy IC 2487. Within a realistic range of dark matter distribution properties, the observed, warped, and lopsided kinematical properties of IC 2487 are possible to reproduce (the background medium of dark matter particles has a velocity dispersion of $\lesssim 80\, {\rm km\, s^{-1}}$ and the density $10^4{\!-\!}10^5\, {\rm M_\odot \, kpc^{-3}}$, more likely at the lower end). We conclude that the proposed mechanism can generate warps, lopsidedness, and misalignments observed in isolated galaxies or galaxies in loose groups. The method can be used also to constrain dark matter spatial and velocity distribution properties.


2017 ◽  
Vol 13 (S334) ◽  
pp. 73-81
Author(s):  
Ortwin Gerhard

AbstractThe Milky Way is a barred galaxy whose central bulge has a box/peanut shape and consists of multiple stellar populations with different orbit distributions. This review describes dynamical and chemo-dynamical equilibrium models for the Bulge, Bar, and inner Disk based on recent survey data. Some of the highlighted results include (i) stellar mass determinations for the different Galactic components, (ii) the need for a core in the dark matter distribution, (iii) a revised pattern speed putting corotation at ~6 kpc, (iv) the strongly barred distribution of the metal-rich stars, and (v) the radially varying dynamics of the metal-poor stars which is that of a thick disk-bar outside ~1 kpc, but changes into an inner centrally concentrated component with several possible origins. On-going and future surveys will refine this picture, making the Milky Way a unique case for studying how similar galaxies form and evolve.


2006 ◽  
pp. 35-47 ◽  
Author(s):  
S. Samurovic

The estimates of the mass of the galaxy NGC 5128 based on the different mass tracers, globular clusters (GCs) and planetary nebulae (PNe), are presented. These estimates are compared with the estimate based on the X-ray methodology and it is found that the results for the mass (and mass-to-light ratio) for all three approaches are in very good agreement interior to 25 arcmin; beyond 25 arcmin the X-rays predict the mass which is too high with respect to the one found using GCs and PNe. Some possible explanations for this discrepancy were discussed. The Jeans equation is also solved and its predictions for the velocity dispersion are then compared with the observed values, which extend to ~8 effective radii in the case of the GCs and ~15 effective radii in the case of the PNe. It is found that interior to ~25 arcmin (~5 effective radii) dark matter does not dominate because the total mass-to-light ratio in the B band in solar units is less than 10. Based on the GCs and PNe beyond ~25 arcmin the total mass-to-light ratio increases to ~14 (at ~80 arcmin) which indicates the existence of dark matter in the outer regions of NGC 5128.


Sign in / Sign up

Export Citation Format

Share Document