scholarly journals Stellar dynamics in the periodic cube

2021 ◽  
Vol 507 (4) ◽  
pp. 4840-4851
Author(s):  
John Magorrian

ABSTRACT We use the problem of dynamical friction within the periodic cube to illustrate the application of perturbation theory in stellar dynamics, testing its predictions against measurements from N-body simulations. Our development is based on the explicitly time-dependent Volterra integral equation for the cube’s linear response, which avoids the subtleties encountered in analyses based on complex frequency. We obtain an expression for the self-consistent response of the cube to steady stirring by an external perturber. From this, we show how to obtain the familiar Chandrasekhar dynamical friction formula and construct an elementary derivation of the Lenard–Balescu equation for the secular quasi-linear evolution of an isolated cube composed of N equal-mass stars. We present an alternative expression for the (real-frequency) van Kampen modes of the cube and show explicitly how to decompose any linear perturbation of the cube into a superposition of such modes.

1999 ◽  
Vol 513 (2) ◽  
pp. 626-637 ◽  
Author(s):  
Oleg Y. Gnedin ◽  
Jeremiah P. Ostriker

1984 ◽  
Vol 276 ◽  
pp. 135 ◽  
Author(s):  
K. O. Thielheim ◽  
H. Wolff

2018 ◽  
Vol 13 (S340) ◽  
pp. 303-304
Author(s):  
Arnab Basak ◽  
Dibyendu Nandy

AbstractConcentrated magnetic structures such as sunspots and starspots play a fundamental role in driving solar and stellar activity. However, as opposed to the sun, observations as well as numerical simulations have shown that stellar spots are usually formed as high-latitude patches extended over wide areas. Using a fully spectral magnetohydrodynamic (MHD) code, we simulate polar starspots produced by self-consistent dynamo action in rapidly rotating convective shells. We carry out high resolution simulations and investigate various properties related to stellar dynamics which lead to starspot formation.


1971 ◽  
Vol 10 ◽  
pp. 168-178
Author(s):  
Frank Hohl

Many problems in stellar dynamics involve phenomena occurring in inhomogeneous systems in which the interaction between the particles is fully described by a self-consistent field operating in phase space. Because the particles interact by means of the long-range Coulomb force, each particle is under the simultaneous influence of a large number of other particles. Therefore, stellar systems will respond to any perturbation in a collective manner, and a study of such systems is concerned essentially with the N-body problem.


Sign in / Sign up

Export Citation Format

Share Document