scholarly journals Swift J011511.0-725611: discovery of a rare Be star/white dwarf binary system in the SMC

2021 ◽  
Vol 508 (1) ◽  
pp. 781-788
Author(s):  
J A Kennea ◽  
M J Coe ◽  
P A Evans ◽  
L J Townsend ◽  
Z A Campbell ◽  
...  

ABSTRACT We report on the discovery of Swift J011511.0-725611, a rare Be X-ray binary system (BeXRB) with a white dwarf (WD) compact object, in the Small Magellanic Cloud (SMC) by S-CUBED, a weekly X-ray/UV survey of the SMC by the Neil Gehrels Swift Observatory. Observations show an approximately 3 month outburst from Swift J011511.0-725611, the first detected by S-CUBED since it began in 2016 June. Swift J011511.0-725611 shows supersoft X-ray emission, indicative of a WD compact object, which is further strengthened by the presence of an 0.871 keV edge, commonly attributed to O viii K-edge in the WD atmosphere. Spectroscopy by South African Large Telescope confirms the Be nature of the companion star, and long term light curve by OGLE finds both the signature of a circumstellar disc in the system at outburst time, and the presence of a 17.4 day periodicity, likely the orbital period of the system. Swift J011511.0-725611 is suggested to be undergoing a Type-II outburst, similar to the previously reported SMC Be white dwarf binary (BeWD), Swift J004427.3-734801. It is likely that the rarity of known BeWD is in part due to the difficulty in detecting such outbursts due to both their rarity, and their relative faintness compared to outbursts in Neutron Star BeXRBs.

1987 ◽  
Vol 92 ◽  
pp. 516-518
Author(s):  
Krishna M.V. Apparao ◽  
S.P. Tarafdar

Several Be stars are identified with bright X-ray sources. (Rappaport and Van den Heuvel, 1982). The bright X-ray emission and observed periodicities indicate the existence of compact objects (white dwarfs, neutron stars or black holes) near the Be stars. A prime example is the brightest X-ray source A0538-66 in LMC, which contains a neutron star with a rotation period of 59 ms. Apparao (1985) explained the X-ray emission, which occurs in periodic flares, by considering an inclined eccentric orbit for the neutron star around the assumed Be-star. The neutron star when it enters a gas ring (around the Be-star) accreting matter giving out X-rays.The X-ray emission from the compact objects, when the gas ring from the Be-star envelopes the objects, has interesting consequences. The X-ray emission produces an ionized region (compact object Stromgren sphere or COSS) in the gas surrounding the compact object (CO).


The high luminosity galactic X-ray sources, apart from the supernovae remnants, probably all exist in multiple star systems in which matter from a normal star is being transferred to a compact object such as a white dwarf, neutron star or black hole. Recent results, obtained with the Ariel 5 and Copernicus satellites, are presented. A number of sources have been studied over extended periods in order to measure the regular periodicities in their X-ray emission. Observations also included are of the Cygnus X-1 source, which is probably the first black hole discovered in our galaxy. X-ray emission, coincident with a radio outburst, from a nearby bright star HR1099 is also reported.


2021 ◽  
Vol 923 (1) ◽  
pp. L18
Author(s):  
Alessia Franchini ◽  
Rebecca G. Martin

Abstract Be star X-ray binaries are transient systems that show two different types of outbursts. Type I outbursts occur each orbital period while type II outbursts have a period and duration that are not related to any periodicity of the binary system. Type II outbursts may be caused by mass transfer to the neutron star from a highly eccentric Be star disk. A sufficiently misaligned Be star decretion disk undergoes secular Von Zeipel–Lidov–Kozai (ZLK) oscillations of eccentricity and inclination. Observations show that in some systems the type II outbursts come in pairs with the second being of lower luminosity. We use numerical hydrodynamical simulations to explore the dynamics of the highly misaligned disk that forms around the neutron star as a consequence of mass transfer from the Be star disk. We show that the neutron star disk may also be ZLK unstable and that the eccentricity growth leads to an enhancement in the accretion rate onto the neutron star that lasts for several orbital periods, resembling a type II outburst. We suggest that in a type II outburst pair, the first outburst is caused by mass transfer from the eccentric Be star disk while the second and smaller outburst is caused by the eccentric neutron star disk. We find that the timescale between outbursts in a pair may be compatible with the observed estimates.


2016 ◽  
Vol 12 (S329) ◽  
pp. 432-432
Author(s):  
Atsuo T. Okazaki

AbstractAbout one half of high-mass X-ray binaries host a Be star [an OB star with a viscous decretion (slowly outflowing) disk]. These Be/X-ray binaries exhibit two types of X-ray outbursts (Stella et al. 1986), normal X-ray outbursts (LX~1036−37 erg s−1) and occasional giant X-ray outbursts (LX > 1037 erg s−1). The origin of giant X-ray outbursts is unknown. On the other hand, a half of gamma-ray binaries have a Be star as the optical counterpart. One of these systems [LS I +61 303 (Porb = 26.5 d)] shows the superorbital (1,667 d) modulation in radio through X-ray bands. No consensus has been obtained for its origin. In this paper, we study a possibility that both phenomena are caused by a long-term, cyclic evolution of a highly misaligned Be disk under the influence of a compact object, by performing 3D hydrodynamic simulations. We find that the Be disk cyclically evolves in mildly eccentric, short-period systems. Each cycle consists of the following stages: 1)As the Be disk grows with time, the initially circular disk becomes eccentric by the Kozai-Lidov mechanism.2)At some point, the disk is tidally torn off near the base and starts precession.3)Due to precession, a gap opens between the disk base and mass ejection region, which allows the formation of a new disk in the stellar equatorial plane (see Figure 1).4)The newly formed disk finally replaces the precessing old disk. Such a cyclic disk evolution has interesting implications for the long-term behavior of high energy emission in Be/X-ray and gamma-ray binaries.


2000 ◽  
Vol 175 ◽  
pp. 713-718 ◽  
Author(s):  
Ignacio Negueruela ◽  
Atsuo T. Okazaki

AbstractWe present a new scenario for the behaviour of Be/X-ray binaries based on long-term multiwavelength monitoring and the decretion disc model. The circumstellar discs of the primaries are truncated because of the tidal and resonant effect of the neutron star. The geometry of the systems and the value of viscosity determine the presence or absence of Type I X-ray outbursts. The interaction of a strongly disturbed disc with the neutron star originates Type II X-ray and optical outbursts.


2018 ◽  
Vol 14 (S346) ◽  
pp. 239-241
Author(s):  
T. İçli ◽  
D. Koçak ◽  
K. Yakut

AbstractLong-term and short-term multicolor photometric variations of the X-ray binary system Her X-1 (HZ Her) has been studied. We obtained new VRI observations of the system by using the 60cm Robotic telescope at the TÜBİTAK National Observatory (TUG) in 2018. Using newly obtained data, we modified the orbital period of the binary system with a neutron star component.


1980 ◽  
Vol 4 (1) ◽  
pp. 108-111 ◽  
Author(s):  
M. L. Duldig ◽  
R. M. Thomas ◽  
R. F. Haynes

There is reasonably strong evidence to suggest that the periodic X-ray, radio and optical variable Cir X-1 is a highly eccentric orbit (e ~ 0.8), binary system comprising an OB supergiant primary and a compact object, probably a neutron star (Whelan et al. 1977; Haynes, Lerche and Murdin 1980).


2020 ◽  
Vol 643 ◽  
pp. A62
Author(s):  
V. Doroshenko ◽  
V. Suleimanov ◽  
S. Tsygankov ◽  
J. Mönkkönen ◽  
L. Ji ◽  
...  

We report on the deep observations of the “bursting pulsar” GRO J1744–28, which were performed with XMM-Newton and aimed to clarify the origin of its X-ray emission in quiescence. We detect the source at a luminosity level of ∼1034 erg s−1 with an X-ray spectrum that is consistent with the power law, blackbody, or accretion-heated neutron star atmosphere models. The improved X-ray localization of the source allowed us to confirm the previously identified candidate optical counterpart as a relatively massive G/K III star at 8 kpc close to the Galactic center, implying an almost face-on view of the binary system. Although we could only find a nonrestricting upper limit on the pulsed fraction of ∼20%, the observed hard X-ray spectrum and strong long-term variability of the X-ray flux suggest that the source is also still accreting when not in outburst. The luminosity corresponding to the onset of centrifugal inhibition of accretion is thus estimated to be at least two orders of magnitude lower than previously reported. We discuss this finding in the context of previous studies and argue that the results indicate a multipole structure in the magnetic field with the first dipole term of ∼1010 G, which is much lower than previously assumed.


Galaxies ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Breanna A. Binder ◽  
Stefania Carpano ◽  
Marianne Heida ◽  
Ryan Lau

In May 2010, an intermediate luminosity optical transient was discovered in the nearby galaxy NGC 300 by a South African amateur astronomer. In the decade since its discovery, multi-wavelength observations of the misnamed “SN 2010da” have continually reshaped our understanding of this high mass X-ray binary system. In this review, we present an overview of the multi-wavelength observations and attempt to understand the 2010 transient event, and later, the reclassification of this system as NGC 300 ULX-1: a red supergiant + neutron star ultraluminous X-ray source.


2018 ◽  
Vol 14 (S346) ◽  
pp. 146-148
Author(s):  
Jingzhi Yan ◽  
Wei Liu ◽  
Peng Zhang ◽  
Qingzhong Liu

AbstractBe/X-ray binaries are a major subclass of high mass X-ray binaries. Two different X-ray outbursts are displayed in the X-ray light curves of such systems. It is generally believed that the X-ray outbursts are connected with the neutron star periastron passage of the circumstellar disk around the Be star. The optical emission of the Be star should be very important to understand the X-ray emission of the compact object. We have monitored several Be/X-ray binaries photometrically and spectroscopically in the optical band. The relationship between the optical emission and X-ray activity is described, which is very useful to explain the X-ray outbursts in Be/X-ray binaries.


Sign in / Sign up

Export Citation Format

Share Document