scholarly journals SALT observations of the supernova remnant MCSNR J0127−7332 and its associated Be X-ray binary SXP 1062 in the SMC

2021 ◽  
Vol 503 (3) ◽  
pp. 3856-3866
Author(s):  
V V Gvaramadze ◽  
A Y Kniazev ◽  
J S Gallagher ◽  
L M Oskinova ◽  
Y-H Chu ◽  
...  

ABSTRACT We report the results of optical spectroscopy of the Small Magellanic Cloud supernova remnant (SNR) MCSNR J0127−7332 and the mass donor Be star, 2dFS 3831, in its associated high-mass X-ray binary SXP 1062 carried out with the Southern African Large Telescope. Using high-resolution long-slit spectra, we measured the expansion velocity of the SNR shell of ${\approx} 140 \, {\rm \, km\, s^{-1}}$, indicating that MCSNR J0127−7332 is in the radiative phase. We found that the observed line ratios in the SNR spectrum can be understood if the local interstellar medium is ionized by 2dFS 3831 and/or OB stars around the SNR. We propose that MCSNR J0127−7332 is the result of supernova explosion within a bubble produced by the stellar wind of the supernova progenitor and that the bubble was surrounded by a massive shell at the moment of supernova explosion. We estimated the age of MCSNR J0127−7332 to be ${\lesssim} 10\, 000$ yr. We found that the spectrum of 2dFS 3831 changes with orbital phase. Namely, the equivalent width of the H α emission line decreased by ≈40 per cent in ≈130 d after periastron passage of the neutron star and then almost returned to its original value in the next ≈100 d. Also, the spectrum of 2dFS 3831 obtained closest to the periastron epoch (about 3 weeks after the periastron) shows a noticeable emission line of He ii λ4686, which disappeared in the next 2 weeks. We interpret these changes as a result of the temporary perturbation and heating of the disc as the neutron star passes through it.

2020 ◽  
Vol 636 ◽  
pp. A99 ◽  
Author(s):  
D. Vanbeveren ◽  
N. Mennekens ◽  
E. P. J. van den Heuvel ◽  
J. Van Bever

Context. Theoretical population number studies of binaries with at least one black hole (BH) component obviously depend on whether or not BHs receive a (natal) kick during their formation. Aims. Several observational facts seem to indicate that BHs do indeed receive a kick during their formation. In the present paper, we discuss additional evidence of this. Methods. The progenitors of wind-fed high-mass X-ray binaries (HMXB) with a BH component (BH HMXB) are WR+OB binaries where the Wolf–Rayet (WR) star will finally collapse and form the BH. Starting from the observed population of WR+OB binaries in the solar neighborhood, we predict the population of wind-fed BH HMXBs as a function of the BH-natal kick. Results. The simulations reveal that when WR stars collapse into a BH with a zero or low kick, we should expect 100 or more wind-fed BH HMXBs in the solar neighborhood, whereas only one is observed (Cyg X-1). We consider this as evidence that either WR components in binaries end their life as a neutron star or that they collapse into BHs, both accompanied by a supernova explosion imparting significant (natal) kicks.


2019 ◽  
Vol 622 ◽  
pp. A173 ◽  
Author(s):  
R. Zamanov ◽  
K. A. Stoyanov ◽  
U. Wolter ◽  
D. Marchev ◽  
N. I. Petrov

We present spectroscopic observations of the Be/X-ray binary X Per obtained during the period 1999–2018. Using new and published data, we found that during “disc-rise” the expansion velocity of the circumstellar disc is 0.4–0.7 km s−1. Our results suggest that the disc radius in recent decades show evidence of resonant truncation of the disc by resonances 10:1, 3:1, and 2:1, while the maximum disc size is larger than the Roche lobe of the primary and smaller than the closest approach of the neutron star. We find correlation between equivalent width of Hα emission line (Wα) and the X-ray flux, which is visible when 15 Å < Wα ≤ 40 Å. The correlation is probably due to wind Roche lobe overflow.


2012 ◽  
Vol 8 (S291) ◽  
pp. 459-461 ◽  
Author(s):  
L. M. Oskinova ◽  
M. A. Guerrero ◽  
V. Hénault-Brunet ◽  
W. Sun ◽  
Y.-H. Chu ◽  
...  

AbstractSXP 1062 is an exceptional case of a young neutron star in a wind-fed high-mass X-ray binary associated with a supernova remnant. A unique combination of measured spin period, its derivative, luminosity and young age makes this source a key probe for the physics of accretion and neutron star evolution. Theoretical models proposed to explain the properties of SXP 1062 shall be tested with new data.


2019 ◽  
Vol 491 (2) ◽  
pp. 1585-1599 ◽  
Author(s):  
Pavan R Hebbar ◽  
Craig O Heinke ◽  
Wynn C G Ho

ABSTRACT We re-analysed numerous archival Chandra X-ray observations of the bright supernova remnant (SNR) 1E 0102.2−7219 in the Small Magellanic Cloud, to validate the detection of a neutron star (NS) in the SNR by Vogt et al. Careful attention to the background is necessary in this spectral analysis. We find that a blackbody + power-law model is a decent fit, suggestive of a relatively strong B field and synchrotron radiation, as in a normal young pulsar, though the thermal luminosity would be unusually high for young pulsars. Among realistic NS atmosphere models, a carbon atmosphere with B = 1012  G best fits the observed X-ray spectra. Comparing its unusually high thermal luminosity ($L_{\mathrm{ bol}} = 1.1_{-0.5}^{+1.6}\times 10^{34}$ erg s−1) to other NSs, we find that its luminosity can be explained by decay of an initially strong magnetic field (as in magnetars or high B-field pulsars) or by slower cooling after the supernova explosion. The nature of the NS in this SNR (and of others in the Magellanic Clouds) could be nicely confirmed by an X-ray telescope with angular resolution like Chandra, but superior spectral resolution and effective area, such as the Lynx concept.


2018 ◽  
Vol 14 (S346) ◽  
pp. 146-148
Author(s):  
Jingzhi Yan ◽  
Wei Liu ◽  
Peng Zhang ◽  
Qingzhong Liu

AbstractBe/X-ray binaries are a major subclass of high mass X-ray binaries. Two different X-ray outbursts are displayed in the X-ray light curves of such systems. It is generally believed that the X-ray outbursts are connected with the neutron star periastron passage of the circumstellar disk around the Be star. The optical emission of the Be star should be very important to understand the X-ray emission of the compact object. We have monitored several Be/X-ray binaries photometrically and spectroscopically in the optical band. The relationship between the optical emission and X-ray activity is described, which is very useful to explain the X-ray outbursts in Be/X-ray binaries.


2018 ◽  
Vol 14 (S346) ◽  
pp. 125-130
Author(s):  
Norbert S. Schulz ◽  
Timothy E. Kallman ◽  
Sebastian Heinz ◽  
Paul Sell ◽  
Peter Jonker ◽  
...  

AbstractCir X-1 is a young X-ray binary exhibiting X-ray flux changes of four orders of magnitude over several decades. It has been observed many times since the launch of the Chandra X-ray Observatory with high energy transmission grating spectrometer and each time the source gave us a vastly different look. At its very lowest X-ray flux we found a single 1.7 keV blackbody spectrum with an emission radius of 0.5 km. Since the neutron star in Cir X-1 is only few thousand years old we identify this as emission from an accretion column since at this youth the neutron star is assumed to be highly magnetized. At an X-ray flux of 1.8×10−11 erg cm−2 s−1 this implies a moderate magnetic field of a few times of 1011 G. The photoionized X-ray emission line properties at this low flux are consistent with B5-type companion wind. We suggest that Cir X-1 is a very young Be-star binary.


10.14311/1310 ◽  
2011 ◽  
Vol 51 (1) ◽  
Author(s):  
F. Giovannelli ◽  
L. Sabau-Graziati

The goal of this paper is to discuss the behaviour of the X-ray transient source A0535+26 which is considered for historical reasons and for the huge amount of multifrequency data, spread over a period of 35 years, as the prototype of this class of objects. Transient sources are formed by a Be star — the primary — and a neutron star X-ray pulsar — the secondary — and constitute a sub-class of X-ray binary systems. We will emphasize the discovery of low-energy indicators of high-energy processes. They are UBVRI magnitudes and Balmer lines of the optical companion. Particular unusual activity of the primary star — usually at the periastron passage of the neutron star – indicates that an X-ray flare is drawing near. The shape and intensity of X-ray outbursts are dependent on the strength of the activity of the primary. We derive the optical orbital period of the system as 110.856 ± 0.02 days. By using the optical flare of December 5, 1981 (here after 811205-E) that triggered the subsequent X-ray outburst of December 13, 1981, we derive the ephemeris of the system as JD Popt−outb = JD0 (2, 444, 944) ± n(110.856 ± 0.02). Thus the passage of the neutron star at the periastron occurs with a periodicity of 110.856 ± 0.02 days and the different kinds of X-ray outbursts of A0535+26 — following the definitions reported in the review by Giovannelli & Sabau-Graziati (1992) — occur just after ∼ 8 days. The delay between optical and X-ray outbursts is just the transit time of the material coming out from the optical companion to reach the neutron star X-ray pulsar. The occurrence of X-ray “normal outbursts”, “anomalous outbursts” or “casual outbursts” is dependent on the activity of the Be star: “quiet state: steady stellar wind”, “excited state: stellar wind plus puffs of material”, and “expulsion of a shell”, respectively. In the latter case, the primary manifests a strong optical activity and the consequent strong X-ray outburst can occur in any orbital phase, with a preference at the periastron passage of the neutron star, because of its gravitational effects on the Be star.


Author(s):  
V. Hambaryan ◽  
K. A. Stoyanov ◽  
M. Mugrauer ◽  
R. Neuhäuser ◽  
W. Stenglein ◽  
...  

We present most probable place and time of the origin of the runaway high-mass X-ray binary 4U 2206+54 based on its Gaia EDR3 astrometric parameters and our new systemic radial velocity. We studied the trace back motion of the system and propose that it originated in the subgroup of the Cepheus OB1 association (Age∼4-10 Myr) with its brightest star BD+53 2820 (B0V; L∼104.7L⊙). The kinematic age of 4U 2206+54 is about 2.8 ± 0.4 Myr, it is at a distance of 3.1-3.3 kpc and has a space velocity of 75-100 km/s with respect to this member star (BD+53 2820) of the Cep OB1 association. This runaway velocity indicates that the progenitor of the neutron star hosted by 4U 2206+54 lost about 4-9M⊙ during the supernova explosion and the latter one received a kick velocity of at least 200-350 km/s. The high-mass X-ray binary 4U 2206+54/BD+53 2790 was born as a member of a subgroup of the Cep OB1 association, the initially most massive star in the system terminated its evolution within ≲ 7 − 9 Myr, corresponding to an initial mass ≳ 32 M⊙.


2003 ◽  
Vol 12 (05) ◽  
pp. 825-831 ◽  
Author(s):  
S. O. TAGIEVA ◽  
E. YAZGAN ◽  
A. ANKAY

We examined the fall-back disk models, and in general accretion, proposed to explain the properties of AXPs and SGRs. We checked the possibility of some gas remaining around the neutron star after a supernova explosion. We also compared AXPs and SGRs with the X-ray pulsars in X-ray binaries. We conclude that the existing models of accretion from a fall-back disk are insufficient to explain the nature of AXPs and SGRs.


2019 ◽  
Vol 628 ◽  
pp. A19 ◽  
Author(s):  
M. Quast ◽  
N. Langer ◽  
T. M. Tauris

Context. The origin and number of the Galactic supergiant X-ray binaries is currently not well understood. They consist of an evolved massive star and a neutron star or black-hole companion. X-rays are thought to be generated from the accretion of wind material donated by the supergiant, while mass transfer due to Roche-lobe overflow is mostly disregarded because the high mass ratios of these systems are thought to render this process unstable. Aims. We investigate how the proximity of supergiant donor stars to the Eddington limit, and their advanced evolutionary stage, may influence the evolution of massive and ultra-luminous X-ray binaries with supergiant donor stars (SGXBs and ULXs). Methods. We constructed models of massive stars with different internal hydrogen and helium gradients (H/He gradients) and different hydrogen-rich envelope masses, and exposed them to slow mass-loss to probe the response of the stellar radius. In addition, we computed the corresponding Roche-lobe overflow mass-transfer evolution with our detailed binary stellar evolution code, approximating the compact objects as point masses. Results. We find that a H/He gradient in the layers beneath the surface, as it is likely present in the well-studied donor stars of observed SGBXs, can enable mass transfer in SGXBs on a nuclear timescale with a black-hole or a neutron star accretor, even for mass ratios in excess of 20. In our binary evolution models, the donor stars rapidly decrease their thermal equilibrium radius and can therefore cope with the inevitably strong orbital contraction imposed by the high mass ratio. We find that the orbital period derivatives of our models agree well with empirical values. We argue that the SGXB phase may be preceded by a common-envelope evolution. The envelope inflation near the Eddington limit means that this mechanism more likely occurs at high metallicity. Conclusion. Our results open a new perspective for understanding that SGBXs are numerous in our Galaxy and are almost completely absent in the Small Magellanic Cloud. Our results may also offer a way to find more ULX systems, to detect mass transfer on nuclear timescales in ULX systems even with neutron star accretors, and shed new light on the origin of the strong B-field in these neutron stars.


Sign in / Sign up

Export Citation Format

Share Document