scholarly journals Determination of Planetary Nebulae angular diameters from radio continuum spectral energy distribution modelling

2021 ◽  
Vol 503 (2) ◽  
pp. 2887-2898
Author(s):  
I S Bojičić ◽  
M D Filipović ◽  
D Urošević ◽  
Q A Parker ◽  
T J Galvin

ABSTRACT Powerful new, high-resolution, high-sensitivity, multifrequency, wide-field radio surveys such as the Australian Square Kilometre Array Pathfinder (ASKAP) Evolutionary Map of the Universe are emerging. They will offer fresh opportunities to undertake new determinations of useful parameters for various kinds of extended astrophysical phenomena. Here, we consider specific application to angular-size determinations of Planetary Nebulae (PNe) via a new radio continuum spectral energy distribution fitting technique. We show that robust determinations of angular size can be obtained, comparable to the best optical and radio observations but with the potential for consistent application across the population. This includes unresolved and/or heavily obscured PNe that are extremely faint or even non-detectable in the optical.

2011 ◽  
Vol 20 (3) ◽  
Author(s):  
S. Simić ◽  
L. Č. Popović ◽  
P. Jovanović

AbstractHere we consider the influence of microlensing on the spectrum of a lensed object with the angular size 5 μas accepting that the composite emission of this object originates from three different regions arranged around its center. We assume that the lensed object has three concentric regions with a black-body emission; the temperatures of these regions are 10 000 K, 7500 K and 5000 K. We investigate how the integral spectral energy distribution (SED) of such stratified source changes due to microlensing by a group of solarmass stars. We find that the SED and flux ratios in the photometric B, V and R passbands show considerable changes during a microlens event. This indicates that the flux anomaly observed in some lensed quasars may be caused by microlensing of a stratified object.


2020 ◽  
Vol 496 (1) ◽  
pp. 695-707 ◽  
Author(s):  
A C Carnall ◽  
S Walker ◽  
R J McLure ◽  
J S Dunlop ◽  
D J McLeod ◽  
...  

ABSTRACT We present a sample of 151 massive (M* > 1010 M⊙) quiescent galaxies at 2 < z < 5, based on a sophisticated Bayesian spectral energy distribution fitting analysis of the CANDELS UDS and GOODS-South fields. Our sample includes a robust sub-sample of 61 objects for which we confidently exclude low-redshift and star-forming solutions. We identify 10 robust objects at z > 3, of which 2 are at z > 4. We report formation redshifts, demonstrating that the oldest objects formed at z > 6; however, individual ages from our photometric data have significant uncertainties, typically ∼0.5 Gyr. We demonstrate that the UVJ colours of the quiescent population evolve with redshift at z > 3, becoming bluer and more similar to post-starburst galaxies at lower redshift. Based upon this, we construct a model for the time evolution of quiescent galaxy UVJ colours, concluding that the oldest objects are consistent with forming the bulk of their stellar mass at z ∼ 6–7 and quenching at z ∼ 5. We report spectroscopic redshifts for two of our objects at z = 3.440 and 3.396, which exhibit extremely weak Ly α emission in ultra-deep VANDELS spectra. We calculate star formation rates based on these line fluxes, finding that these galaxies are consistent with our quiescent selection criteria, provided their Ly α escape fractions are >3 and >10 per cent, respectively. We finally report that our highest redshift robust object exhibits a continuum break at λ ∼ 7000 Å in a spectrum from VUDS, consistent with our photometric redshift of $z_\mathrm{phot}=4.72^{+0.06}_{-0.04}$. If confirmed as quiescent, this object would be the highest redshift known quiescent galaxy. To obtain stronger constraints on the times of the earliest quenching events, high-SNR spectroscopy must be extended to z ≳ 3 quiescent objects.


1993 ◽  
Vol 155 ◽  
pp. 99-108
Author(s):  
C.Y. Zhang

The past decade has seen significant progress in our understanding of spectral energy distribution of planetary nebulae over the entire wavelength range from UV to radio. In this review we show the detailed breakdown of the energy budget for a planetary nebula as a system of the three components, i.e., the central star, the gaseous nebula and the dust shell. This picture of the energy distribution is further discussed in the context of planetary nebula evolution.


2021 ◽  
Vol 922 (2) ◽  
pp. 163
Author(s):  
Gerard T. van Belle ◽  
Kaspar von Braun ◽  
David R. Ciardi ◽  
Genady Pilyavsky ◽  
Ryan S. Buckingham ◽  
...  

Abstract We calculate directly determined values for effective temperature (T eff) and radius (R) for 191 giant stars based upon high-resolution angular size measurements from optical interferometry at the Palomar Testbed Interferometer. Narrow- to wideband photometry data for the giants are used to establish bolometric fluxes and luminosities through spectral energy distribution fitting, which allows for homogeneously establishing an assessment of spectral type and dereddened V 0 − K 0 color; these two parameters are used as calibration indices for establishing trends in T eff and R. Spectral types range from G0III to M7.75III, V 0 − K 0 from 1.9 to 8.5. For the V 0 − K 0 = {1.9, 6.5} range, median T eff uncertainties in the fit of effective temperature versus color are found to be less than 50 K; over this range, T eff drops from 5050 to 3225 K. Linear sizes are found to be largely constant at 11 R ⊙ from G0III to K0III, increasing linearly with subtype to 50 R ⊙ at K5III, and then further increasing linearly to 150 R ⊙ by M8III. Three examples of the utility of this data set are presented: first, a fully empirical Hertzsprung–Russell diagram is constructed and examined against stellar evolution models; second, values for stellar mass are inferred based on measures of R and literature values for log g ; finally, an improved calibration of an angular size prediction tool, based upon V and K values for a star, is presented.


2012 ◽  
Vol 749 (1) ◽  
pp. 72 ◽  
Author(s):  
Viviana Acquaviva ◽  
Eric Gawiser ◽  
Steven J. Bickerton ◽  
Norman A. Grogin ◽  
Yicheng Guo ◽  
...  

2019 ◽  
Vol 627 ◽  
pp. A29 ◽  
Author(s):  
E. Solano ◽  
E. L. Martín ◽  
J. A. Caballero ◽  
C. Rodrigo ◽  
R. E. Angulo ◽  
...  

Context. Ultracool dwarfs are objects with spectral types equal to or later than M7. Most of them have been discovered using wide-field imaging surveys. The Virtual Observatory has proven to be very useful for efficiently exploiting these astronomical resources. Aims. We aim to validate a Virtual Observatory methodology designed to discover and characterise ultracool dwarfs in the J-PLUS photometric survey. J-PLUS is a multiband survey carried out with the wide-angle T80Cam optical camera mounted on the 0.83 m telescope JAST/T80 in the Observatorio Astrofísico de Javalambre. We make use of the Internal Data Release covering 528 deg2. Methods. We complemented J-PLUS photometry with other catalogues in the optical and infrared using VOSA, a Virtual Observatory tool that estimates physical parameters from the spectral energy distribution fitting to collections of theoretical models. Objects identified as ultracool dwarfs were distinguished from background M giants and highly reddened stars using parallaxes and proper motions from Gaia DR2. Results. We identify 559 ultracool dwarfs, ranging from i = 16.2 mag to i = 22.4 mag, of which 187 are candidate ultracool dwarfs not previously reported in the literature. This represents an increase in the number of known ultracool dwarfs of about 50% in the region of the sky we studied, particularly at the faint end of our sensitivity, which is interesting as reference for future wide and deep surveys such as Euclid. Three candidates are interesting targets for exoplanet surveys because of their proximity (distances less than 40 pc). We also analysed the kinematics of ultracool dwarfs in our catalogue and found evidence that it is consistent with a Galactic thin-disc population, except for six objects that might be members of the thick disc. Conclusion. The results we obtained validate the proposed methodology, which will be used in future J-PLUS and J-PAS releases. Considering the region of the sky covered by the Internal Data Release used in this work, we estimate that 3000–3500 new ultracool dwarfs will be discovered at the end of the J-PLUS project.


2011 ◽  
Vol 141 (3) ◽  
pp. 86 ◽  
Author(s):  
Jun Ma ◽  
Song Wang ◽  
Zhenyu Wu ◽  
Zhou Fan ◽  
Yanbin Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document