scholarly journals Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

2016 ◽  
Vol 459 (2) ◽  
pp. 1543-1553 ◽  
Author(s):  
Mao-Chun Wu ◽  
Fu-Guo Xie ◽  
Ye-Fei Yuan ◽  
Zhaoming Gan
2021 ◽  
Vol 502 (1) ◽  
pp. L72-L78
Author(s):  
K Mohamed ◽  
E Sonbas ◽  
K S Dhuga ◽  
E Göğüş ◽  
A Tuncer ◽  
...  

ABSTRACT Similar to black hole X-ray binary transients, hysteresis-like state transitions are also seen in some neutron-star X-ray binaries. Using a method based on wavelets and light curves constructed from archival Rossi X-ray Timing Explorer observations, we extract a minimal timescale over the complete range of transitions for 4U 1608-52 during the 2002 and 2007 outbursts and the 1999 and 2000 outbursts for Aql X-1. We present evidence for a strong positive correlation between this minimal timescale and a similar timescale extracted from the corresponding power spectra of these sources.


2014 ◽  
Vol 10 (S312) ◽  
pp. 139-140
Author(s):  
Fu-Guo Xie

AbstractSignificant progresses have been made since the discovery of hot accretion flow, a theory successfully applied to the low-luminosity active galactic nuclei (LLAGNs) and black hole (BH) X-ray binaries (BHBs) in their hard states. Motivated by these updates, we re-investigate the radiative efficiency of hot accretion flow. We find that, the brightest regime of hot accretion flow shows a distinctive property, i.e. it has a constant efficiency independent of accretion rates, similar to the standard thin disk. For less bright regime, the efficiency has a steep positive correlation with the accretion rate, while for faint regime typical of advection-dominated accretion flow, the correlation is shadower. This result can naturally explain the observed two distinctive correlations between radio and X-ray luminosities in black hole X-ray binaries. The key difference in systems with distinctive correlations could be the viscous parameter, which determines the critical luminosity of different accretion modes.


Author(s):  
JULIEN MALZAC

We discuss the nature of the X-ray emitting plasma of black hole binaries. It is well known that the temperature and optical depth of the Comptonising electrons of the X-ray corona of black hole binaries can be measured using spectroscopy in the 1 keV-1 MeV energy band. We emphasize recent developments in the modeling of high energy radiation processes which allow us to constrain other important physical parameters of the corona, such as the strength of magnetic field, or the temperature of the ions. The results appear to challenge current accretion models. In particular, standard advection dominated accretion flow do not match the observed properties of bright hard state X-ray binaries such as Cygnus X-1 or GX 339-4. On the other hand, we find that all the data would be consistent with a multi-zone magnetically dominated hot accretion flow model. We also emphasize that besides the usual spectral state transitions observed at luminosities above a few percent of Eddington, there is observational evidence for at least two additional, more subtle, radiative transitions occuring at lower luminosities.


2014 ◽  
Vol 10 (S312) ◽  
pp. 247-248
Author(s):  
Erlin Qiao

AbstractWe interpret the radio/X-ray correlation of LR ∝ LX~1.4 for LX/LEdd ≳ 10−3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10−3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10−3, is systematically less than that of the case for LX/LEdd < 10−3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.


10.14311/1480 ◽  
2011 ◽  
Vol 51 (6) ◽  
Author(s):  
M. Obst ◽  
K. Pottschmidt ◽  
A. Lohfink ◽  
J. Wilms ◽  
M. Böck ◽  
...  

GRS 1758–258 is the least studied of the three persistent black hole X-ray binaries in our Galaxy. It is also one of only two known black hole candidates, including all black hole transients, which shows a decrease of its 3-10 keV flux when entering the thermally dominated soft state, rather than an increase.We present the spectral evolution of GRS 1758–258 from RXTE-PCA observations spanning a time of about 11 years from 1996 to 2007. During this time, seven dim soft states are detected. We also consider INTEGRAL monitoring observations of the source and compare the long-term behavior to that of the bright persistent black hole X-ray binary Cygnus X-1. We discuss the observed state transitions in the light of physical scenarios for black hole transitions.


2020 ◽  
Vol 495 (2) ◽  
pp. 2408-2415
Author(s):  
Pei-Xin Shen ◽  
Wei-Min Gu

ABSTRACT When the matter from a companion star is accreted towards the central compact accretor, i.e. a black hole (BH) or a neutron star (NS), an accretion disc and a jet outflow will form, providing bight X-ray and radio emission, which is known as X-ray binaries (XRBs). In the low/hard state, there exist disc–jet couplings in XRBs, but it remains uncertain whether the jet power comes from the disc or the central accretor. Moreover, black hole X-ray binaries (BHXRBs) have different properties compared with neutron star X-ray binaries (NSXRBs): quiescent BHXRBs are typically two to three orders of magnitude less luminous than NSXRBs in X-ray, whereas BHXRBs are more radio loud than NSXRBs. In observations, an empirical correlation has been established between radio and X-ray luminosity, $L_{\rm R} \propto L_{\rm X}^b$, where b ∼ 0.7 for BHXRBs and b ∼ 1.4 for non-pulsating NSXRBs. However, there are some outliers of BHXRBs showing unusually steep correlation as NSXRBs at higher luminosities. In this work, under the assumption that the origin of jet power is related to the internal energy of the inner disc, we apply our magnetized, radiatively efficient thin disc model and the well-known radiatively inefficient accretion flow model to NSXRBs and BHXRBs. We find that the observed radio/X-ray correlations in XRBs can be well understood by the disc–jet couplings.


2021 ◽  
Vol 502 (3) ◽  
pp. 3870-3878
Author(s):  
Erlin Qiao ◽  
B F Liu

ABSTRACT When neutron star low-mass X-ray binaries (NS-LMXBs) are in the low-level accretion regime (i.e. $L_{\rm X}\lesssim 10^{36}\ \rm erg\ s^{-1}$), the accretion flow in the inner region around the NS is expected to exist in the form of the hot accretion flow, e.g. the advection-dominated accretion flow (ADAF) as that in black hole X-ray binaries. Following our previous studies in Qiao & Liu (2020a, b) on the ADAF accretion around NSs, in this paper, we investigate the radiative efficiency of NSs with an ADAF accretion in detail, showing that the radiative efficiency of NSs with an ADAF accretion is much lower than that of $\epsilon \sim {\dot{M} GM\over R_{*}}/{\dot{M} c^2}\sim 0.2$ despite the existence of the hard surface. As a result, given an X-ray luminosity LX (e.g. between 0.5 and 10 keV), $\dot{M}$ calculated by $\dot{M}=L_{\rm X}{R_{*}\over {GM}}$ is lower than the real $\dot{M}$ calculated within the framework of the ADAF accretion. The real $\dot{M}$ can be more than two orders of magnitude higher than that calculated by $\dot{M}=L_{\rm X}{R_{*}\over {GM}}$ with appropriate model parameters. Finally, we discuss that if applicable, the model of ADAF accretion around a NS can be applied to explain the observed millisecond X-ray pulsation in some NS-LMXBs (such as PSR J1023+0038, XSS J12270−4859, and IGR J17379−3747) at a lower X-ray luminosity of a few times of $10^{33}\ \rm erg\ s^{-1}$, since at this X-ray luminosity the calculated $\dot{M}$ with the model of ADAF accretion can be high enough to drive a fraction of the matter in the accretion flow to be channelled on to the surface of the NS forming the X-ray pulsation.


Sign in / Sign up

Export Citation Format

Share Document