scholarly journals On magnetic field amplification and particle acceleration near non-relativistic astrophysical shocks: particles in MHD cells simulations

2017 ◽  
Vol 473 (3) ◽  
pp. 3394-3409 ◽  
Author(s):  
Allard Jan van Marle ◽  
Fabien Casse ◽  
Alexandre Marcowith
2014 ◽  
Vol 28 ◽  
pp. 1460180 ◽  
Author(s):  
XUHUI CHEN ◽  
RITABAN CHATTERJEE ◽  
GIOVANNI FOSSATI ◽  
MARTIN POHL

Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that γ-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code,which tracks all the light travel time effects, we evaluate several scenarios that may represent such phenomena. Both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow.


2021 ◽  
Vol 126 (9) ◽  
Author(s):  
Artem Bohdan ◽  
Martin Pohl ◽  
Jacek Niemiec ◽  
Paul J. Morris ◽  
Yosuke Matsumoto ◽  
...  

2019 ◽  
Vol 490 (1) ◽  
pp. 1156-1165 ◽  
Author(s):  
Allard Jan van Marle ◽  
Fabien Casse ◽  
Alexandre Marcowith

ABSTRACT We use particle-in-magnetohydrodynamics-cells to model particle acceleration and magnetic field amplification in a high-Mach, parallel shock in three dimensions and compare the result to 2D models. This allows us to determine whether 2D simulations can be relied upon to yield accurate results in terms of particle acceleration, magnetic field amplification, and the growth rate of instabilities. Our simulations show that the behaviour of the gas and the evolution of the instabilities are qualitatively similar for both the 2D and 3D models, with only minor quantitative differences that relate primarily to the growth speed of the instabilities. The main difference between 2D and 3D models can be found in the spectral energy distributions (SEDs) of the non-thermal particles. The 2D simulations prove to be more efficient, accelerating a larger fraction of the particles and achieving higher velocities. We conclude that, while 2D models are sufficient to investigate the instabilities in the gas, their results have to be treated with some caution when predicting the expected SED of a given shock.


2019 ◽  
Vol 210 ◽  
pp. 04006
Author(s):  
Anabella T. Araudo ◽  
Anthony R. Bell ◽  
James Matthews ◽  
Katherine Blundell

We study particle acceleration and magnetic field amplification in the termination shocks (hotspots) of radiogalaxy jets. The cut-off of the synchrotron spectrum in the hotspots of powerful radiogalaxies is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the jet termination shock is about 1 TeV for a canonical magnetic field of 100 μG. Based on theoretical considerations and observational data we show that the maximum energy of electrons cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonable large and most of the jet kinetic energy goes to non-thermal electrons. The maximum energy is ultimately determined by the ability to scatter particles back and forth the shock, and this limit applies to both electrons and protons. Therefore, the maximum energy of protons is also about 1 TeV when radiative cooling is not efficient. We show that non-resonant hybrid (Bell) instabilities generated by the streaming of cosmic rays can grow fast enough to amplify the jet magnetic field up to 100 μG and accelerate particles up to the maximum energies observed in the hotspots of radiogalaxies.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012014
Author(s):  
S M Osipov ◽  
A M Bykov ◽  
M Lemoine

Abstract We present a self-consistent Monte Carlo model of particle acceleration by relativistic shock waves. The model includes the magnetic field amplification in the shock upstream by cosmic ray driven plasma instabilities. The parameters of the Monte Carlo model are obtained based on PIC calculations. We present the spectra of accelerated particles simulated in the frame of the model.


2015 ◽  
Vol 806 (2) ◽  
pp. 243 ◽  
Author(s):  
A. T. Araudo ◽  
A. R. Bell ◽  
K. M. Blundell

1996 ◽  
Vol 160 ◽  
pp. 435-436
Author(s):  
H.-J. Wiebicke ◽  
U. Geppert

AbstractWe present a scenario of magnetic field (MF) evolution of newly-born neutron stars (NSs). Numerical calculations show that in the hot phase of young NSs the MF can be amplified by thermoelectric effects, starting from a moderately strong seed-field. Therefore, there is no need to assume a 1012G dipole field immediately after the gravitational collapse of the supernova (SN) event. The widely accepted scenario for such a field to be produced by flux conservation during the collapse is critically discussed. Instead, it can be generated by amplification and selection effects in the first 104yrs, and by the subsequent fast ohmic decay of higher multipole components, when the NS cools down.


Sign in / Sign up

Export Citation Format

Share Document