CONNECTION BETWEEN MAGNETIC FIELD AMPLIFICATION AND BLAZAR FLARES

2014 ◽  
Vol 28 ◽  
pp. 1460180 ◽  
Author(s):  
XUHUI CHEN ◽  
RITABAN CHATTERJEE ◽  
GIOVANNI FOSSATI ◽  
MARTIN POHL

Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that γ-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code,which tracks all the light travel time effects, we evaluate several scenarios that may represent such phenomena. Both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow.

2020 ◽  
Vol 38 (3) ◽  
pp. 181-187
Author(s):  
Sandeep Kumar ◽  
Y. K. Kim ◽  
T. Kang ◽  
Min Sup Hur ◽  
Moses Chung

AbstractThe nonlinear evolution of electron Weibel instability in a symmetric, counterstream, unmagnetized electron–positron e−/e+ plasmas is studied by a 2D particle-in-cell (PIC) method. The magnetic field is produced and amplified by the Weibel instability, which extracts energy from the plasma anisotropy. A weakly relativistic drift velocity of 0.5c is considered for two counterstreaming e−/e+ plasma flows. Simulations show that in a homogeneous e−/e+ plasma distribution, the magnetic field amplifies exponentially in the linear regime and rapidly decays after saturation. However, in the case of inhomogeneous e−/e+ plasma distribution, the magnetic field re-amplifies at post-saturation. We also find that the amount of magnetic field amplification at post-saturation depends on the strength of the density inhomogeneity of the upstream plasma distribution. The temperature calculation shows that the finite thermal anisotropy exists in the case of an inhomogeneous plasma distribution which leads to the second-stage magnetic field amplification after the first saturation. Such density inhomogeneities are present in a variety of astrophysical sources: for example, in supernova remnants and gamma-ray bursts. Therefore, the present analysis is very useful in understanding these astrophysical sources, where anisotropic density fluctuations are very common in the downstream region of the relativistic shocks and the widely distributed magnetic field.


2019 ◽  
Vol 490 (3) ◽  
pp. 4183-4193
Author(s):  
Oscar M Pimentel ◽  
Fabio D Lora-Clavijo

ABSTRACT The origin and strength of the magnetic field in some systems like active galactic nuclei or gamma-ray bursts is still an open question in astrophysics. A possible mechanism to explain the magnetic field amplification is the Kelvin–Helmholtz instability, since it is able to transform the kinetic energy in a shear flow into magnetic energy. Through this work, we investigate the linear and non-linear effects produced by the magnetic susceptibility in the development of the Kelvin–Helmholtz instability in a relativistic plasma. The system under study consists of a plane interface separating two uniform fluids that move with opposite velocities. The magnetic field in the system is parallel to the flows and the susceptibility is assumed to be homogeneous, constant in time, and equal in both fluids. In particular, we analyse the instability in three different cases, when the fluids are diamagnetic, paramagnetic, and when the susceptibility is zero. We compute the dispersion relation in the linear regime and found that the interface between diamagnetic fluids is more stable than between paramagnetic ones. We check the analytical results with numerical simulations, and explore the effect of the magnetic polarization in the non-linear regime. We find that the magnetic field is more amplified in paramagnetic fluids than in diamagnetic ones. Surprisingly, the effect of the susceptibility in the amplification is stronger when the magnetization parameter is smaller. The results of our work make this instability a more efficient and effective amplification mechanism of seed magnetic fields when considering the susceptibility of matter.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012014
Author(s):  
S M Osipov ◽  
A M Bykov ◽  
M Lemoine

Abstract We present a self-consistent Monte Carlo model of particle acceleration by relativistic shock waves. The model includes the magnetic field amplification in the shock upstream by cosmic ray driven plasma instabilities. The parameters of the Monte Carlo model are obtained based on PIC calculations. We present the spectra of accelerated particles simulated in the frame of the model.


1990 ◽  
Vol 142 ◽  
pp. 457-465 ◽  
Author(s):  
M. R. Kundu ◽  
S. M. White

The emission of solar flares at millimeter wavelengths is of great interest both in its own right and because it is generated by the energetic electrons which also emit gamma rays. Since high-resolution imaging at gamma-ray energies is not presently possible, millimeter observations can act as a substitute. Except for that class of flares known as gamma-ray flares the millimetric emission is optically thin. It can be used as a powerful diagnostic of the energy distribution of electrons in solar flares and its evolution, and of the magnetic field. We have carried out high-spatial-resolution millimeter observations of solar flares this year using the Berkeley-Illinois-Maryland Array (BIMA), and report on the preliminary results in this paper (Kundu et al 1990; White et al 1990). We also report some recent results obtained from multifrequency observations using the VLA (White et al 1990).


1994 ◽  
Vol 142 ◽  
pp. 797-806
Author(s):  
Jonathan Arons ◽  
Marco Tavani

AbstractWe discuss recent research on the structure and particle acceleration properties of relativistic shock waves in which the magnetic field is transverse to the flow direction in the upstream medium, and whose composition is either pure electrons and positrons or primarily electrons and positrons with an admixture of heavy ions. Particle-in-cell simulation techniques as well as analytic theory have been used to show that such shocks in pure pair plasmas are fully thermalized—the downstream particle spectra are relativistic Maxwellians at the temperature expected from the jump conditions. On the other hand, shocks containing heavy ions which are a minority constituent by number but which carry most of the energy density in the upstream medium do put ~20% of the flow energy into a nonthermal population of pairs downstream, whose distribution in energy space is N(E) ∝ E−2, where N(E)dE is the number of particles with energy between E and E + dE.The mechanism of thermalization and particle acceleration is found to be synchrotron maser activity in the shock front, stimulated by the quasi-coherent gyration of the whole particle population as the plasma flowing into the shock reflects from the magnetic field in the shock front. The synchrotron maser modes radiated by the heavy ions are absorbed by the pairs at their (relativistic) cyclotron frequencies, allowing the maximum energy achievable by the pairs to be γ±m±c2 = mic2γ1/Zi, where γ1 is the Lorentz factor of the upstream flow and Zi, is the atomic number of the ions. The shock’s spatial structure is shown to contain a series of “overshoots” in the magnetic field, regions where the gyrating heavy ions compress the magnetic field to levels in excess of the eventual downstream value.This shock model is applied to an interpretation of the structure of the inner regions of the Crab Nebula, in particular to the “wisps,” surface brightness enhancements near the pulsar. We argue that these surface brightness enhancements are the regions of magnetic overshoot, which appear brighter because the small Larmor radius pairs are compressed and radiate more efficiently in the regions of more intense magnetic field. This interpretation suggests that the structure of the shock terminating the pulsar’s wind in the Crab Nebula is spatially resolved, and allows one to measure γ1, and a number of other properties of the pulsar’s wind. We also discuss applications of the shock theory to the termination shocks of the winds from rotation-powered pulsars embedded in compact binaries. We show that this model adequately accounts for (and indeed predicted) the recently discovered X-ray flux from PSR 1957+20, and we discuss several other applications to other examples of these systems.Subject headings: acceleration of particles — ISM: individual (Crab Nebula) — relativity — shock waves


2008 ◽  
Vol 587-588 ◽  
pp. 313-317
Author(s):  
D.C. Leitão ◽  
I.G. Trindade ◽  
R. Fermento ◽  
João P. Araújo ◽  
S. Cardoso ◽  
...  

In this work, a study of the sensitivity enhancement of spin valve sensors, when located in close proximity to magnetic flux guides, is presented. The magnetoresistance (MR) of spin-valve sensors, lithographically patterned into stripes with lateral dimensions, (length) l = 500 µm, (width) wsensor = 1, 2, 6 µm and placed near one/two Co93.5Zr2.8Nb3.7 (CZN) magnetic flux guide, is characterized at room temperature. CZN has a high permeability that together with a defined microstructured shape, is able to concentrate the magnetic flux in a small area, leading to an increase in sensor's sensitivity. The magnetic field amplification is estimated by comparison of sensor sensitivity with/without magnetic flux guides, in the linear operation range, and studied as a function of different parameters. Besides an enhancement in sensitivity, sensors also exhibit an important increase in the hard axis coercivity and a shift from MR(H=0) = 0.5, both attributed to the magnetic flux guides. Amplification factors of the order of 20 are observed..


2018 ◽  
Vol 14 (S342) ◽  
pp. 137-140
Author(s):  
A. Ignesti ◽  
G. Brunetti ◽  
M. Gitti ◽  
S. Giacintucci

AbstractSeveral cool-core clusters are known to host a radio mini-halo, a diffuse, steep-spectrum radio source located in their cores, thus probing the presence of non-thermal components as magnetic field and relativistic particles on scales not directly influenced by the central AGN. The nature of the mechanism that produces a population of radio-emitting relativistic particles on the scale of hundreds of kiloparsecs is still unclear. At the same time, it is still debated if the central AGN may play a role in the formation of mini-halos by providing the seed of the relativistic particles. We aim to investigate these open issues by studying the connection between thermal and non-thermal components of the intra-cluster medium. We performed a point-to-point analysis of the radio and the X-ray surface brightness of a compilation of mini-halos. We find that mini-halos have super-linear scalings between radio and X-rays, with radio brightness declining more steeply than the X-ray brightness. This trend is opposite to that generally observed in giant radio halos, thus marking a possible difference in the physics of the two radio sources. Finally, using the scalings between radio and X-rays and assuming a hadronic origin of mini-halos we derive constraints on the magnetic field in the core of the hosting clusters.


Crystals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 547
Author(s):  
Si Wu ◽  
Yinghao Zhu ◽  
Junchao Xia ◽  
Pengfei Zhou ◽  
Haiyong Ni ◽  
...  

We have grown La 1.37 Sr 1.63 Mn 2 O 7 single crystals with a laser-diode-heated floating-zone furnace and studied the crystallinity, structure, and magnetoresistance (MR) effect by in-house X-ray Laue diffraction, X-ray powder diffraction, and resistance measurements. The La 1.37 Sr 1.63 Mn 2 O 7 single crystal crystallizes into a tetragonal structure with space group I4/mmm at room temperature. At 0 T, the maximum resistance centers around ∼166.9 K. Below ∼35.8 K, it displays an insulating character with an increase in resistance upon cooling. An applied magnetic field of B = 7 T strongly suppresses the resistance indicative of a negative MR effect. The minimum MR value equals −91.23% at 7 T and 128.7 K. The magnetic-field-dependent resistance shows distinct features at 1.67, 140, and 322 K, from which we calculated the corresponding MR values. At 14 T and 140 K, the colossal negative MR value is down to −94.04(5)%. We schematically fit the MR values with different models for an ideal describing of the interesting features of the MR value versus B curves.


Sign in / Sign up

Export Citation Format

Share Document