scholarly journals GRB 161219B/SN 2016jca: a powerful stellar collapse

2019 ◽  
Vol 487 (4) ◽  
pp. 5824-5839 ◽  
Author(s):  
C Ashall ◽  
P A Mazzali ◽  
E Pian ◽  
S E Woosley ◽  
E Palazzi ◽  
...  

ABSTRACT We report observations and analysis of the nearby gamma-ray burst GRB 161219B (redshift z = 0.1475) and the associated Type Ic supernova (SN) 2016jca. GRB 161219B had an isotropic gamma-ray energy of ∼1.6 × 1050 erg. Its afterglow is likely refreshed at an epoch preceding the first photometric points (0.6 d), which slows down the decay rates. Combined analysis of the SN light curve and multiwavelength observations of the afterglow suggest that the GRB jet was broad during the afterglow phase (full opening angle ∼42° ± 3°). Our spectral series shows broad absorption lines typical of GRB supernovae (SNe), which testify to the presence of material with velocities up to ∼0.25c. The spectrum at 3.73 d allows for the very early identification of an SN associated with a GRB. Reproducing it requires a large photospheric velocity ($35\, 000 \pm 7000$ km s−1). The kinetic energy of the SN is estimated through models to be Ekin≈4 × 1052 erg in spherical symmetry. The ejected mass in the explosion was Mej≈6.5 ± 1.5 M⊙, much less than that of other GRB-SNe, demonstrating diversity among these events. The total amount of 56Ni in the explosion was 0.27 ± 0.05 M⊙. The observed spectra require the presence of freshly synthesized 56Ni at the highest velocities, at least three times more than a standard GRB-SN. We also find evidence for a decreasing 56Ni abundance as a function of decreasing velocity. This suggests that SN 2016jca was a highly aspherical explosion viewed close to on-axis, powered by a compact remnant. Applying a typical correction for asymmetry, the energy of SN 2016jca was ∼(1–3) × 1052 erg, confirming that most of the energy produced by GRB-SNe goes into the kinetic energy of the SN ejecta.

2020 ◽  
Vol 493 (3) ◽  
pp. 3521-3534 ◽  
Author(s):  
Paz Beniamini ◽  
Jonathan Granot ◽  
Ramandeep Gill

ABSTRACT GRB 170817A/GW 170817 is the first gamma-ray burst (GRB) clearly viewed far from the GRB jet’s symmetry axis. Its afterglow was densely monitored over a wide range of frequencies and times. It has been modelled extensively, primarily numerically, and although this endeavour was very fruitful, many of the underlying model parameters remain undetermined. We provide analytic modelling of GRB afterglows observed off-axis, considering jets with a narrow core (of half-opening angle θc) and power-law wings in energy per unit solid angle (ϵ = ϵcΘ−a where Θ = [1 + (θ/θc)2]1/2) and initial specific kinetic energy (Γ0 − 1 = [Γc, 0 − 1]Θ−b), as well as briefly discuss Gaussian jets. Our study reveals qualitatively different types of light curves that can be viewed in future off-axis GRBs, with either single or double peaks, depending on the jet structure and the viewing angle. Considering the light-curve shape rather than the absolute normalizations of times and/or fluxes, removes the dependence of the light curve on many of the highly degenerate burst parameters. This study can be easily used to determine the underlying jet structure, significantly reduce the effective parameter space for numerical fitting attempts and provide physical insights. As an illustration, we show that for GRB 170817A, there is a strong correlation between the allowed values of Γc, 0 and b, leading to a narrow strip of allowed solutions in the Γc, 0–b plane above some minimal values Γc, 0 ≳ 40, b ≳ 1.2. Furthermore, the Lorentz factor of the material dominating the early light curve can be constrained by three independent techniques to be Γ0(θmin, 0) ≈ 5–7.


2020 ◽  
Vol 497 (3) ◽  
pp. 3542-3556
Author(s):  
E Pian ◽  
P A Mazzali ◽  
T J Moriya ◽  
A Rubin ◽  
A Gal-Yam ◽  
...  

ABSTRACT The hydrogen-poor supernova (SN) PTF11rka (z = 0.0744), reported by the Palomar Transient Factory, was observed with various telescopes starting a few days after the estimated explosion time of 2011 December 5 UT and up to 432 rest-frame days thereafter. The rising part of the light curve was monitored only in the RPTF filter band, and maximum in this band was reached ∼30 rest-frame days after the estimated explosion time. The light curve and spectra of PTF11rka are consistent with the core-collapse explosion of a ∼10 M⊙ carbon–oxygen core evolved from a progenitor of main-sequence mass 25–40 M⊙, that liberated a kinetic energy Ek≈4 × 1051 erg, expelled ∼8 M⊙ of ejecta, and synthesized ∼0.5 M⊙ of 56Ni. The photospheric spectra of PTF11rka are characterized by narrow absorption lines that point to suppression of the highest ejecta velocities (≳ 15 000 km s−1). This would be expected if the ejecta impacted a dense, clumpy circumstellar medium. This in turn caused them to lose a fraction of their energy (∼5 × 1050 erg), less than 2 per cent of which was converted into radiation that sustained the light curve before maximum brightness. This is reminiscent of the superluminous SN 2007bi, the light-curve shape and spectra of which are very similar to those of PTF11rka, although the latter is a factor of 10 less luminous and evolves faster in time. PTF11rka is in fact more similar to gamma-ray burst SNe in luminosity, although it has a lower energy and a lower Ek/Mej ratio.


2021 ◽  
Vol 503 (2) ◽  
pp. 2966-2972
Author(s):  
Lauren Rhodes ◽  
Rob Fender ◽  
David R A Williams ◽  
Kunal Mooley

ABSTRACT We present the results of radio observations from the eMERLIN telescope combined with X-ray data from Swift for the short-duration gamma-ray burst (GRB) 200826A, located at a redshift of 0.71. The radio light curve shows evidence of a sharp rise, a peak around 4–5 d post-burst, followed by a relatively steep decline. We provide two possible interpretations based on the time at which the light curve reached its peak. (1) If the light curve peaks earlier, the peak is produced by the synchrotron self-absorption frequency moving through the radio band, resulting from the forward shock propagating into a wind medium and (2) if the light curve peaks later, the turnover in the light curve is caused by a jet break. In the former case we find a minimum equipartition energy of ∼3 × 1047 erg and bulk Lorentz factor of ∼5, while in the latter case we estimate the jet opening angle of ∼9–16°. Due to the lack of data, it is impossible to determine which is the correct interpretation, however due to its relative simplicity and consistency with other multiwavelength observations which hint at the possibility that GRB 200826A is in fact a long GRB, we prefer the scenario one over scenario two.


2000 ◽  
Vol 17 (10) ◽  
pp. 778-780 ◽  
Author(s):  
Huang Yong-Feng ◽  
Dai Zi-Gao ◽  
Lu Tan

1974 ◽  
Vol 62 (1) ◽  
pp. 115-143 ◽  
Author(s):  
Mohamed Gad-El-Hak ◽  
Stanley Corrsin

Wind-tunnel turbulence behind a parallel-rod grid with jets evenly distributed along each rod is nearly isotropic. Homogeneity improvement over prior related experiments was attained by the use of controllable nozzles. Compared with the ‘passive’ case, the downwind-jet ‘active’ grid has a smaller static pressure drop across it and gives a smaller turbulence level at a prescribed distance from it, while the upwind-jet grid gives a larger static pressure drop and larger turbulence level. ‘Counterflow injection’ generates larger turbulence energy and larger scales, both events being evidently associated with instability of the jet system. This behaviour is much like that commonly observed behind passive grids of higher solidities.If the turbulent kinetic energy is approximated as an inverse power law in distance, the (positive) exponent decreases with increasing (downwind or upwind) jet strength, corresponding to slower absolute decay rates. No peculiar decay behaviour occurs when the jet grid is ‘self-propelled’ (zero net average force), or when the static pressure drop across it is zero.The injection does not change the general behaviour of the energy spectra, although the absolute spectra change inasmuch as the turbulence kinetic energy changes.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. 201-206 ◽  
Author(s):  
K. De ◽  
M. M. Kasliwal ◽  
E. O. Ofek ◽  
T. J. Moriya ◽  
J. Burke ◽  
...  

Compact neutron star binary systems are produced from binary massive stars through stellar evolution involving up to two supernova explosions. The final stages in the formation of these systems have not been directly observed. We report the discovery of iPTF 14gqr (SN 2014ft), a type Ic supernova with a fast-evolving light curve indicating an extremely low ejecta mass (≈0.2 solar masses) and low kinetic energy (≈2 × 1050ergs). Early photometry and spectroscopy reveal evidence of shock cooling of an extended helium-rich envelope, likely ejected in an intense pre-explosion mass-loss episode of the progenitor. Taken together, we interpret iPTF 14gqr as evidence for ultra-stripped supernovae that form neutron stars in compact binary systems.


2020 ◽  
Vol 641 ◽  
pp. L10
Author(s):  
Takashi J. Moriya ◽  
Pablo Marchant ◽  
Sergei I. Blinnikov

We show that the luminous supernovae associated with ultra-long gamma-ray bursts can be related to the slow cooling from the explosions of hydrogen-free progenitors that are extended by pulsational pair-instability. We have recently shown that some rapidly-rotating hydrogen-free gamma-ray burst progenitors that experience pulsational pair-instability can keep an extended structure caused by pulsational pair-instability until the core collapse. These types of progenitors have large radii exceeding 10 R⊙ and they sometimes reach beyond 1000 R⊙ at the time of the core collapse. They are, therefore, promising progenitors of ultra-long gamma-ray bursts. Here, we perform light-curve modeling of the explosions of one extended hydrogen-free progenitor with a radius of 1962 R⊙. The progenitor mass is 50 M⊙ and 5 M⊙ exists in the extended envelope. We use the one-dimensional radiation hydrodynamics code STELLA in which the explosions are initiated artificially by setting given explosion energy and 56Ni mass. Thanks to the large progenitor radius, the ejecta experience slow cooling after the shock breakout and they become rapidly evolving (≲10 days), luminous (≳1043 erg s−1) supernovae in the optical even without energy input from the 56Ni nuclear decay when the explosion energy is more than 1052 erg. The 56Ni decay energy input can affect the light curves after the optical light-curve peak and make the light-curve decay slowly when the 56Ni mass is around 1 M⊙. They also have a fast photospheric velocity above 10 000 km s−1 and a hot photospheric temperature above 10 000 K at around the peak luminosity. We find that the rapid rise and luminous peak found in the optical light curve of SN 2011kl, which is associated with the ultra-long gamma-ray burst GRB 111209A, can be explained as the cooling phase of the extended progenitor. The subsequent slow light-curve decline can be related to the 56Ni decay energy input. The ultra-long gamma-ray burst progenitors we proposed recently can explain both the ultra-long gamma-ray burst duration and the accompanying supernova properties. When the gamma-ray burst jet is off-axis or choked, the luminous supernovae could be observed as fast blue optical transients without accompanying gamma-ray bursts.


2006 ◽  
Vol 369 (4) ◽  
pp. 2059-2064 ◽  
Author(s):  
A. Panaitescu ◽  
P. Mészáros ◽  
D. Burrows ◽  
J. Nousek ◽  
N. Gehrels ◽  
...  
Keyword(s):  

2008 ◽  
Author(s):  
Fu-Wen Zhang ◽  
Yong-Feng Huang ◽  
Zi-Gao Dai ◽  
Bing Zhang

2019 ◽  
Vol 490 (2) ◽  
pp. 2042-2049 ◽  
Author(s):  
V P Utrobin ◽  
N N Chugai

ABSTRACT The enigmatic type IIP SN 2016X demonstrates the unprecedented asphericity in the nebular Hα line profile, the absence of nebular [O i] emission, and the unusual occultation effect due to the internal dust. The hydrodynamic modelling of the bolometric light curve and expansion velocities suggests that the event is an outcome of the massive star explosion that ejected 28 M$\odot$ with the kinetic energy of 1.7 × 1051 erg and 0.03 M$\odot$ of radioactive 56Ni. We recover the bipolar distribution of 56Ni from the Hα profile via the simulation of the emissivity produced by non-spherical 56Ni ejecta. The conspicuous effect of the dust absorption in the Hα profile rules out the occultation by the dusty sphere or dusty thick disc, but turns out consistent with the thin dusty disc-like structure in the plane perpendicular to the bipolar axis. We speculate that the absence of the nebular [O i] emission might originate from the significant cooling of the oxygen-rich matter mediated by CO and SiO molecules.


Sign in / Sign up

Export Citation Format

Share Document