scholarly journals From the far-ultraviolet to the far-infrared – galaxy emission at 0 ≤ z ≤ 10 in the shark semi-analytic model

2019 ◽  
Vol 489 (3) ◽  
pp. 4196-4216 ◽  
Author(s):  
Claudia del P Lagos ◽  
Aaron S G Robotham ◽  
James W Trayford ◽  
Rodrigo Tobar ◽  
Matías Bravo ◽  
...  

ABSTRACT We combine the shark semi-analytic model of galaxy formation with the prospect software tool for spectral energy distribution (SED) generation to study the multiwavelength emission of galaxies from the far-ultraviolet (FUV) to the far-infrared (FIR) at 0 ≤ z ≤ 10. We produce a physical model for the attenuation of galaxies across cosmic time by combining a local Universe empirical relation to compute the dust mass of galaxies from their gas metallicity and mass, attenuation curves derived from radiative transfer calculations of galaxies in the eagle hydrodynamic simulation suite, and the properties of shark galaxies. We are able to produce a wide range of galaxies, from the z = 8 star-forming galaxies with almost no extinction, z = 2 submillimetre galaxies, down to the normal star-forming and red-sequence galaxies at z = 0. Quantitatively, we find that shark reproduces the observed (i) z = 0 FUV-to-FIR, (ii) 0 ≤ z ≤ 3 rest-frame K-band, and (iii) 0 ≤ z ≤ 10 rest-frame FUV luminosity functions, (iv) z ≤ 8 UV slopes, (v) the FUV-to-FIR number counts (including the widely disputed 850 μm), (vi) redshift distribution of bright $850\, \mu$m galaxies, and (vii) the integrated cosmic SED from z = 0 to 1 to an unprecedented level. This is achieved without the need to invoke changes in the stellar initial mass function, dust-to-metal mass ratio, or metal enrichment time-scales. Our model predicts star formation in galaxy discs to dominate in the FUV-to-optical, while bulges dominate at the NIR at all redshifts. The FIR sees a strong evolution in which discs dominate at z ≤ 1 and starbursts (triggered by both galaxy mergers and disc instabilities, in an even mix) dominate at higher redshifts, even out to z = 10.

2018 ◽  
Vol 618 ◽  
pp. L8 ◽  
Author(s):  
M. Bondi ◽  
G. Zamorani ◽  
P. Ciliegi ◽  
V. Smolčić ◽  
E. Schinnerer ◽  
...  

We investigate the linear radio size properties of the μJy populations of radio-selected active galactic nuclei (AGN) and star-forming galaxies (SFGs) using a multi-resolution catalog based on the original VLA-COSMOS 3 GHz 0.″75 resolution mosaic and its convolved images (up to a resolution of 2.″2). The final catalog contains 6399 radio sources above a 3 GHz total flux density of ST >  20 μJy (median ⟨ST⟩=37 μJy), with redshift information (median ⟨z⟩=1.0), and multi-wavelength classification as SFGs, radio-excess AGN (RX-AGN), or non-radio-excess AGN (NRX-AGN). RX-AGN are those whose radio emission exceeds the star formation rate derived by fitting the global spectral energy distribution. We derive the evolution with redshift and luminosity of the median linear sizes of each class of objects. We find that RX-AGN are compact, with median sizes of ∼1–2 kpc and increasing with redshift, corresponding to an almost constant angular size of 0.″25. NRX-AGN typically have radio sizes a factor of 2 larger than the RX-AGN. The median radio size of SFGs is about 5 kpc up to z ∼ 0.7, and it decreases beyond this redshift. Using luminosity-complete subsamples of objects, we separately investigate the effect of redshift and luminosity dependance. We compare the radio sizes of SFGs with those derived in the rest-frame far-infrared (FIR) and UV bands. We find that SFGs have comparable sizes (within 15%) in the radio and rest-frame FIR, while the sizes measured in the UV-band are systematically larger than the radio sizes.


2018 ◽  
Vol 614 ◽  
pp. A33 ◽  
Author(s):  
D. Donevski ◽  
V. Buat ◽  
F. Boone ◽  
C. Pappalardo ◽  
M. Bethermin ◽  
...  

Context. Over the last decade a large number of dusty star-forming galaxies has been discovered up to redshift z = 2 − 3 and recent studies have attempted to push the highly confused Herschel SPIRE surveys beyond that distance. To search for z ≥ 4 galaxies they often consider the sources with fluxes rising from 250 μm to 500 μm (so-called “500 μm-risers”). Herschel surveys offer a unique opportunity to efficiently select a large number of these rare objects, and thus gain insight into the prodigious star-forming activity that takes place in the very distant Universe. Aims. We aim to implement a novel method to obtain a statistical sample of 500 μm-risers and fully evaluate our selection inspecting different models of galaxy evolution. Methods. We consider one of the largest and deepest Herschel surveys, the Herschel Virgo Cluster Survey. We develop a novel selection algorithm which links the source extraction and spectral energy distribution fitting. To fully quantify selection biases we make end-to-end simulations including clustering and lensing. Results. We select 133 500 μm-risers over 55 deg2, imposing the criteria: S500 > S350 > S250, S250 > 13.2 mJy and S500 > 30 mJy. Differential number counts are in fairly good agreement with models, displaying a better match than other existing samples. The estimated fraction of strongly lensed sources is 24+6-5% based on models. Conclusions. We present the faintest sample of 500 μm-risers down to S250 = 13.2 mJy. We show that noise and strong lensing have an important impact on measured counts and redshift distribution of selected sources. We estimate the flux-corrected star formation rate density at 4 < z < 5 with the 500 μm-risers and find it to be close to the total value measured in far-infrared. This indicates that colour selection is not a limiting effect to search for the most massive, dusty z > 4 sources.


2019 ◽  
Vol 487 (1) ◽  
pp. 1210-1217 ◽  
Author(s):  
Ariane Trudeau ◽  
Tracy Webb ◽  
Julie Hlavacek-Larrondo ◽  
Allison Noble ◽  
Marie-Lou Gendron-Marsolais ◽  
...  

ABSTRACT We present deep, multiwavelength radio observations of SpARCS104922.6 + 564032.5, a z = 1.71 galaxy cluster with a starbursting core. Observations were made with the Karl G. Jansky Very Large Array (JVLA) in three bands: 1–2 GHz, 4–8 GHz, and 8–12 GHz. We detect a radio source coincident with the brightest cluster galaxy (BCG) that has a spectral index of α = 0.44 ± 0.29 and is indicative of emission from an active galactic nucleus. The radio luminosity is consistent with the average luminosity of the lower redshift BCG sample, but the flux densities are 6σ below the predicted values of the star-forming spectral energy distribution based on far infrared data. Our new fit fails to simultaneously describe the far infrared and radio fluxes. This, coupled with the fact that no other bright source is detected in the vicinity of the BCG implies that the star formation region, traced by the infrared emission, is extended or clumpy and not located directly within the BCG. Thus, we suggest that the star-forming core might not be driven by a single major wet merger, but rather by several smaller galaxies stripped of their gas or by a displaced cooling flow, although more data are needed to confirm any of those scenarios.


2019 ◽  
Vol 621 ◽  
pp. A139 ◽  
Author(s):  
K. Tisanić ◽  
V. Smolčić ◽  
J. Delhaize ◽  
M. Novak ◽  
H. Intema ◽  
...  

We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ∼ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared–radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies’ (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1.4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz and 610 MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ∈ [0.3, 4],  SFR ≥ 100 M⊙ yr−1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α1 = 0.42 ± 0.06 below a rest-frame frequency of 4.3 GHz to α2 = 0.94 ± 0.06 above 4.3 GHz. Our results are in line with previous low-redshift studies of HSFGs ( SFR >  10 M⊙  yr−1) that show the SED of HSFGs to differ from the SED found for normal SFGs ( SFR <  10 M⊙ yr−1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free–free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q − z trend in SFGs.


2020 ◽  
Vol 499 (3) ◽  
pp. 4325-4369
Author(s):  
Andrés F Ramos Padilla ◽  
M L N Ashby ◽  
Howard A Smith ◽  
Juan R Martínez-Galarza ◽  
Aliza G Beverage ◽  
...  

ABSTRACT Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a spectral energy distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $10^{10} \,\rm {M}_{*}$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN–[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages.


2020 ◽  
Vol 643 ◽  
pp. A1 ◽  
Author(s):  
O. Le Fèvre ◽  
M. Béthermin ◽  
A. Faisst ◽  
G. C. Jones ◽  
P. Capak ◽  
...  

The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158 μm line and far infrared (FIR) continuum emission during the period of rapid mass assembly, right after the end of the HI reionization, at redshifts of 4 <  z <  6. We present the survey science goals, the observational strategy, and the sample selection of the 118 galaxies observed with ALMA, with an average beam minor axis of about 0.85″, or ∼5 kpc at the median redshift of the survey. The properties of the sample are described, including spectroscopic redshifts derived from the UV-rest frame, stellar masses, and star-formation rates obtained from a spectral energy distribution (SED) fitting. The observed properties derived from the ALMA data are presented and discussed in terms of the overall detection rate in [CII] and FIR continuum, with the observed signal-to-noise distribution. The sample is representative of the SFG population in the main sequence at these redshifts. The overall detection rate in [CII] is 64% for a signal-to-noise ratio (S/N) threshold larger than 3.5 corresponding to a 95% purity (40% detection rate for S/N >  5). Based on a visual inspection of the [CII] data cubes together with the large wealth of ancillary data, we find a surprisingly wide range of galaxy types, including 40% that are mergers, 20% extended and dispersion-dominated, 13% compact, and 11% rotating discs, with the remaining 16% too faint to be classified. This diversity indicates that a wide array of physical processes must be at work at this epoch, first and foremost, those of galaxy mergers. This paper sets a reference sample for the gas distribution in normal SFGs at 4 <  z <  6, a key epoch in galaxy assembly, which is ideally suited for studies with future facilities, such as the James Webb Space Telescope (JWST) and the Extremely Large Telescopes (ELTs).


2019 ◽  
Vol 631 ◽  
pp. A156 ◽  
Author(s):  
L. A. Díaz-García ◽  
A. J. Cenarro ◽  
C. López-Sanjuan ◽  
I. Ferreras ◽  
M. Cerviño ◽  
...  

Aims. Our aim is to determine the distribution of stellar population parameters (extinction, age, metallicity, and star formation rates) of quiescent galaxies within the rest-frame stellar mass–colour diagrams and UVJ colour–colour diagrams corrected for extinction up to z ∼ 1. These novel diagrams reduce the contamination in samples of quiescent galaxies owing to dust-reddened galaxies, and they provide useful constraints on stellar population parameters only using rest-frame colours and/or stellar mass. Methods. We set constraints on the stellar population parameters of quiescent galaxies combining the ALHAMBRA multi-filter photo-spectra with our fitting code for spectral energy distribution, MUlti-Filter FITting (MUFFIT), making use of composite stellar population models based on two independent sets of simple stellar population (SSP) models. The extinction obtained by MUFFIT allowed us to remove dusty star-forming (DSF) galaxies from the sample of red UVJ galaxies. The distributions of stellar population parameters across these rest-frame diagrams are revealed after the dust correction and are fitted by LOESS, a bi-dimensional and locally weighted regression method, to reduce uncertainty effects. Results. Quiescent galaxy samples defined via classical UVJ diagrams are typically contaminated by a ∼20% fraction of DSF galaxies. A significant part of the galaxies in the green valley are actually obscured star-forming galaxies (∼30–65%). Consequently, the transition of galaxies from the blue cloud to the red sequence, and hence the related mechanisms for quenching, seems to be much more efficient and faster than previously reported. The rest-frame stellar mass–colour and UVJ colour–colour diagrams are useful for constraining the age, metallicity, extinction, and star formation rate of quiescent galaxies by only their redshift, rest-frame colours, and/or stellar mass. Dust correction plays an important role in understanding how quiescent galaxies are distributed in these diagrams and is key to performing a pure selection of quiescent galaxies via intrinsic colours.


2019 ◽  
Vol 15 (S341) ◽  
pp. 211-215
Author(s):  
Y. Tamura ◽  
K. Mawatari ◽  
T. Hashimoto ◽  
A. K. Inoue ◽  
E. Zackrissonm ◽  
...  

AbstractWe present ALMA detection of the [O iii] 88 μm line and 850 μm dust continuum emission in a Y-dropout Lyman break galaxy, MACS0416_Y1. The [O iii] detection confirms the object with a spectroscopic redshift to be z = 8.3118±0.0003. The 850 μm continuum intensity (0.14 mJy) implies a large dust mass on the order of 4×106M⊙. The ultraviolet-to-far infrared spectral energy distribution modeling, where the [O iii] emissivity model is incorporated, suggests the presence of a young (τage ≍ 4 Myr), star-forming (SFR ≍ 60M⊙yr−1), and moderately metal-polluted (Z ≍ 0.2Z⊙) stellar component with a stellar mass of 3 × 108M⊙. An analytic dust mass evolution model with a single episode of star formation does not reproduce the metallicity and dust mass in ≍ 4 Myr, suggesting an underlying evolved stellar component as the origin of the dust mass.


2019 ◽  
Vol 15 (S352) ◽  
pp. 342-346
Author(s):  
Andrew J. Bunker

AbstractI present an overview of the JWST Advanced Deep Extragalactic Survey (JADES), a joint program of the JWST/NIRCam and NIRSpec Guaranteed Time Observations (GTO) teams involving 950 hours of observation. We will target two well-studied fields with excellent supporting data (e.g., from HST-CANDELS): GOODS-North and South, including the Ultra Deep Field. The science goal of JADES is to chart galaxy evolution at z > 2, and potentially out to z > 10, using the rest-frame optical and near-IR though observations from ≍ 1–5μm. Multi-colour NIRCam imaging with 9 filters will enable photometric redshifts and the application of the Lyman break technique out to unprecedented distances. NIRSpec spectroscopy (with spectral resolving powers of R = 100, 1000 & 2700) will measure secure spectroscopic redshifts of the photometrically-selected population, as well as stellar continuum slopes in the UV rest-frame, and hence study the role of dust, stellar population age, and other effects. Measuring emission lines can constrain the dust extinction, star formation rates, metallicity, chemical abundances, ionization and excitation mechanism in high redshift galaxies. Coupling NIRCam and NIRSpec observations will determine stellar populations (age, star formation histories, abundances) of galaxies and provide the information to correct their broad-band spectral energy distribution for likely line contamination. Potentially we can search for signatures of Population III stars such as HeII. We can address the contribution of star-forming galaxies at z > 7 to reionization by determining the faint end slope of the luminosity function and investigating the escape fraction of ionizing photons by comparing the UV stellar continuum with the Balmer-line fluxes.


Sign in / Sign up

Export Citation Format

Share Document