scholarly journals Simultaneous Millimetre-wave and X-ray monitoring of the Seyfert galaxy NGC 7469

2019 ◽  
Vol 491 (3) ◽  
pp. 3523-3534 ◽  
Author(s):  
Ehud Behar ◽  
Shai Kaspi ◽  
Gabriel Paubert ◽  
Nicolas Billot ◽  
Uria Peretz ◽  
...  

ABSTRACT We report on daily monitoring of the Seyfert galaxy ngc 7469, around 95 and 143 GHz, with the iram (Institut de Radioastronomie Millimetrique) 30- m radio telescope, and with the Swift X-ray and UV/optical telescopes, over an overlapping period of 45 d. The source was observed on 36 d with iram, and the flux density in both mm bands was on average ∼10 mJy, but varied by $\pm 50{{\ \rm per\ cent}}$, and by up to a factor of 2 between days. The present iram variability parameters are consistent with earlier monitoring, which had only 18 data points. The X-ray light curve of ngc 7469 over the same period spans a factor of 5 in flux with small uncertainties. Similar variability in the mm band and in the X-rays lends support to the notion of both sources originating in the same physical component of the active galactic nucleus (AGN), likely the accretion disc corona. Simultaneous monitoring in eight UV/optical bands shows much less variability than the mm and X-rays, implying this light originates from a different AGN component, likely the accretion disc itself. We use a tentative 14-d lag of the X-ray light curve with respect to the 95 GHz light curve to speculate on coronal implications. More precise mm-band measurements of a sample of X-ray-variable AGN are needed, preferably also on time-scales of less than a day where X-rays vary dramatically, in order to properly test the physical connection between the two bands.

2020 ◽  
Vol 494 (3) ◽  
pp. 4057-4068
Author(s):  
Mayukh Pahari ◽  
I M McHardy ◽  
Federico Vincentelli ◽  
Edward Cackett ◽  
Bradley M Peterson ◽  
...  

ABSTRACT Using a month-long X-ray light curve from RXTE/PCA and 1.5 month-long UV continuum light curves from IUE spectra in 1220–1970 Å, we performed a detailed time-lag study of the Seyfert 1 galaxy NGC 7469. Our cross-correlation analysis confirms previous results showing that the X-rays are delayed relative to the UV continuum at 1315 Å by 3.49 ± 0.22 d, which is possibly caused by either propagating fluctuation or variable Comptonization. However, if variations slower than 5 d are removed from the X-ray light curve, the UV variations then lag behind the X-ray variations by 0.37 ± 0.14 d, consistent with reprocessing of the X-rays by a surrounding accretion disc. A very similar reverberation delay is observed between Swift/XRT X-ray and Swift/UVOT UVW2, U light curves. Continuum light curves extracted from the Swift/GRISM spectra show delays with respect to X-rays consistent with reverberation. Separating the UV continuum variations faster and slower than 5 d, the slow variations at 1825 Å lag those at 1315 Å by 0.29 ± 0.06 d, while the fast variations are coincident (0.04 ± 0.12 d). The UV/optical continuum reverberation lag from IUE, Swift, and other optical telescopes at different wavelengths are consistent with the relationship: τ ∝ λ4/3, predicted for the standard accretion disc theory while the best-fitting X-ray delay from RXTE and Swift/XRT shows a negative X-ray offset of ∼0.38 d from the standard disc delay prediction.


Author(s):  
Mayur B Shende ◽  
Prashali Chauhan ◽  
Prasad Subramanian

Abstract The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However, estimates of this timescale are hindered by a lack of knowledge of the operative viscosity in the collisionless plasma comprising the inner disc. We use published simulation results for cosmic ray diffusion through turbulent magnetic fields to arrive at a viscosity prescription appropriate to hot accretion discs. We construct simplified disc models using this viscosity prescription and estimate disc collapse timescales for 3C 120, 3C 111, and GRS 1915+105. The Shakura-Sunyaev α parameter resulting from our model ranges from 0.02 to 0.08. Our inner disc collapse timescale estimates agree well with those of the observed X-ray dips. We find that the collapse timescale is most sensitive to the outer radius of the hot accretion disc.


2020 ◽  
Vol 499 (2) ◽  
pp. 3006-3018
Author(s):  
Bangzheng Sun ◽  
Marina Orio ◽  
Andrej Dobrotka ◽  
Gerardo Juan Manuel Luna ◽  
Sergey Shugarov ◽  
...  

ABSTRACT We present X-ray observations of novae V2491 Cyg and KT Eri about 9 yr post-outburst of the dwarf nova and post-nova candidate EY Cyg, and of a VY Scl variable. The first three objects were observed with XMM–Newton, KT Eri also with the Chandra ACIS-S camera, V794 Aql with the Chandra ACIS-S camera and High Energy Transmission Gratings. The two recent novae, similar in outburst amplitude and light curve, appear very different at quiescence. Assuming half of the gravitational energy is irradiated in X-rays, V2491 Cyg is accreting at $\dot{m}=1.4\times 10^{-9}{\!-\!}10^{-8}\,{\rm M}_\odot \,{\rm yr}^{-1}$, while for KT Eri, $\dot{m}\lt 2\times 10^{-10}{\rm M}_\odot \,{\rm yr}$. V2491 Cyg shows signatures of a magnetized WD, specifically of an intermediate polar. A periodicity of  39 min, detected in outburst, was still measured and is likely due to WD rotation. EY Cyg is accreting at $\dot{m}\sim 1.8\times 10^{-11}{\rm M}_\odot \,{\rm yr}^{-1}$, one magnitude lower than KT Eri, consistently with its U Gem outburst behaviour and its quiescent UV flux. The X-rays are modulated with the orbital period, despite the system’s low inclination, probably due to the X-ray flux of the secondary. A period of  81 min is also detected, suggesting that it may also be an intermediate polar. V794 Aql had low X-ray luminosity during an optically high state, about the same level as in a recent optically low state. Thus, we find no clear correlation between optical and X-ray luminosity: the accretion rate seems unstable and variable. The very hard X-ray spectrum indicates a massive WD.


2020 ◽  
Vol 497 (1) ◽  
pp. 648-655
Author(s):  
M Chernyakova ◽  
D Malyshev ◽  
S Mc Keague ◽  
B van Soelen ◽  
J P Marais ◽  
...  

ABSTRACT PSR B1259-63 is a gamma-ray binary system hosting a radio pulsar orbiting around an O9.5Ve star, LS 2883, with a period of ∼3.4 yr. The interaction of the pulsar wind with the LS 2883 outflow leads to unpulsed broad-band emission in the radio, X-rays, GeV, and TeV domains. While the radio, X-ray, and TeV light curves show rather similar behaviour, the GeV light curve appears very different with a huge outburst about a month after a periastron. The energy release during this outburst seems to significantly exceed the spin-down luminosity of the pulsar and both the GeV light curve and the energy release vary from one orbit to the next. In this paper, we present for the first time the results of optical observations of the system in 2017, and also reanalyse the available X-ray and GeV data. We present a new model in which the GeV data are explained as a combination of the bremsstrahlung and inverse Compton emission from the unshocked and weakly shocked electrons of the pulsar wind. The X-ray and TeV emission is produced by synchrotron and inverse Compton emission of energetic electrons accelerated on a strong shock arising due to stellar/pulsar winds collision. The brightness of the GeV flare is explained in our model as a beaming effect of the energy released in a cone oriented, during the time of the flare, in the direction of the observer.


2001 ◽  
Vol 554 (2) ◽  
pp. L133-L137 ◽  
Author(s):  
I. E. Papadakis ◽  
K. Nandra ◽  
D. Kazanas

1994 ◽  
Vol 159 ◽  
pp. 380-380
Author(s):  
G. Matt ◽  
A.C. Fabian ◽  
R.R. Ross

The presence of iron lines and high energy excesses in the X-ray spectra of Seyfert galaxies has been firmly established by Ginga (e.g. Nandra & Pounds 1993 and references therein). These features are generally interpreted as signatures of the reprocessing of the primary X-rays by matter in the neighbourhood of the central black hole, probably distributed in an accretion disc (Lightman & White 1988, George & Fabian 1991, Matt, Perola & Piro 1991).


2010 ◽  
Vol 36 (9) ◽  
pp. 611-633 ◽  
Author(s):  
V. T. Doroshenko ◽  
S. G. Sergeev ◽  
E. Yu. Vovk ◽  
Yu. S. Efimov ◽  
S. A. Klimanov ◽  
...  

1996 ◽  
Vol 158 ◽  
pp. 185-186
Author(s):  
D. A. H. Buckley

TX Col (1H0547–407; Porb = 5.72 h) is an intermediate polar (IP) with spin and synodic (beat) periods of 1911s and 2106 s respectively (Buckley & Tuohy 1989). EXOSAT observations (Tuohy et al. 1986) showed the beat period dominated at higher energies (ME; 1… 9keV), while the spin period was stronger in softer X-rays (LE1; 0.1… IkeV). The high flux level, and pulse fraction (>70%), of the soft X-rays were unique in an IP at that time. Now three other IPs, recently discovered from the ROSAT survey, have been found to show a true separate soft X-ray component, similar to the polars (Motch & Haberl 1994).The strength of the synodic X-ray period in TX Col was, until the recent discovery of the variable polarised IP, RX J1712.6–2414 (Buckley et al. 1995), unique. This was taken as evidence for direct accretion onto the magnetosphere (e.g. Mason, Rosen & Hellier 1988), through a component of the accretion stream overflowing the disc (Hellier 1992).


1988 ◽  
Vol 108 ◽  
pp. 450-451
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
H. Itoh ◽  
K. Nomoto ◽  
T. Shigeyama

The X-ray spectrum observed by Ginga is characterized by a component below 10keV which decreases with increasing photon energy, and a component above 10keV which is nearly flat. This unusual X-ray spectrum may be understood as follows; X-rays below 10keV is likely to be due to thermal emission coming from the shock-heated ejecta, and X-rays above 10keV to be due to γ-ray degradation inside the ejecta. If thermal emission due to the collision of the ejecta with circumstellar matter (CSM) is responsible for X-rays below 10keV, the epoch of the collision can be estimated to be ∼ 0.2yr after the explosion if ∼ 0.5yr is the time when the X-ray flux at ∼ 10keV reaches its maximum. The X-ray light curve then requires the inner radius of CSM to be ∼ 1×1016cm for an expansion velocity, Vex ≃2×109cm s−1.


Sign in / Sign up

Export Citation Format

Share Document